Files
tubestation/tools/fuzzing/faulty/Faulty.cpp

937 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <cerrno>
#include <climits>
#include <cmath>
#include <fstream>
#include <prinrval.h>
#include <unistd.h>
#include "base/string_util.h"
#include "FuzzingMutate.h"
#include "FuzzingTraits.h"
#include "chrome/common/ipc_channel.h"
#include "chrome/common/ipc_message.h"
#include "chrome/common/file_descriptor_set_posix.h"
#include "mozilla/ipc/Faulty.h"
#include "mozilla/TypeTraits.h"
#include "nsNetCID.h"
#include "nsIEventTarget.h"
#include "nsIFile.h"
#include "nsIFileStreams.h"
#include "nsILineInputStream.h"
#include "nsIRunnable.h"
#include "nsThreadUtils.h"
#include "nsLocalFile.h"
#include "nsNetCID.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "nsXULAppAPI.h"
#include "prenv.h"
namespace mozilla {
namespace ipc {
using namespace mozilla::fuzzing;
const unsigned int Faulty::sDefaultProbability = Faulty::DefaultProbability();
const bool Faulty::sIsLoggingEnabled = Faulty::Logging();
/**
* RandomNumericValue generates negative and positive integrals.
*/
template <typename T>
T RandomIntegral()
{
static_assert(mozilla::IsIntegral<T>::value == true,
"T must be an integral type");
double r = static_cast<double>(random() % ((sizeof(T) * CHAR_BIT) + 1));
T x = static_cast<T>(pow(2.0, r)) - 1;
if (std::numeric_limits<T>::is_signed && random() % 2 == 0) {
return (x * -1) - 1;
}
return x;
}
/**
* RandomNumericLimit returns either the min or max limit of an arithmetic
* data type.
*/
template <typename T>
T RandomNumericLimit() {
static_assert(mozilla::IsArithmetic<T>::value == true,
"T must be an arithmetic type");
return random() % 2 == 0 ? std::numeric_limits<T>::min()
: std::numeric_limits<T>::max();
}
/**
* RandomIntegerRange returns a random integral within a user defined range.
*/
template <typename T>
T RandomIntegerRange(T min, T max)
{
static_assert(mozilla::IsIntegral<T>::value == true,
"T must be an integral type");
MOZ_ASSERT(min < max);
return static_cast<T>((random() % (max - min + 1)) + min);
}
/**
* RandomFloatingPointRange returns a random floating-point number within a
* user defined range.
*/
template <typename T>
T RandomFloatingPointRange(T min, T max)
{
static_assert(mozilla::IsFloatingPoint<T>::value == true,
"T must be a floating point type");
MOZ_ASSERT(min < max);
T x = static_cast<T>(random()) / static_cast<T>(RAND_MAX);
return min + x * (max - min);
}
/**
* RandomFloatingPoint returns a random floating-point number.
*/
template <typename T>
T RandomFloatingPoint()
{
static_assert(mozilla::IsFloatingPoint<T>::value == true,
"T must be a floating point type");
int radix = RandomIntegerRange<int>(std::numeric_limits<T>::min_exponent,
std::numeric_limits<T>::max_exponent);
T x = static_cast<T>(pow(2.0, static_cast<double>(radix)));
return x * RandomFloatingPointRange<T>(0.0, 10.0);
}
/**
* FuzzIntegralType mutates an incercepted integral type of a pickled message.
*/
template <typename T>
void FuzzIntegralType(T* v, bool largeValues)
{
static_assert(mozilla::IsIntegral<T>::value == true,
"T must be an integral type");
switch (random() % 6) {
case 0:
if (largeValues) {
(*v) = RandomIntegral<T>();
break;
}
MOZ_FALLTHROUGH;
case 1:
if (largeValues) {
(*v) = RandomNumericLimit<T>();
break;
}
MOZ_FALLTHROUGH;
case 2:
if (largeValues) {
(*v) = RandomIntegerRange<T>(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
break;
}
MOZ_FALLTHROUGH;
default:
switch(random() % 2) {
case 0:
// Prevent underflow
if (*v != std::numeric_limits<T>::min()) {
(*v)--;
break;
}
MOZ_FALLTHROUGH;
case 1:
// Prevent overflow
if (*v != std::numeric_limits<T>::max()) {
(*v)++;
break;
}
}
}
}
/**
* FuzzFloatingPointType mutates an incercepted floating-point type of a
* pickled message.
*/
template <typename T>
void FuzzFloatingPointType(T* v, bool largeValues)
{
static_assert(mozilla::IsFloatingPoint<T>::value == true,
"T must be a floating point type");
switch (random() % 6) {
case 0:
if (largeValues) {
(*v) = RandomNumericLimit<T>();
break;
}
MOZ_FALLTHROUGH;
case 1:
if (largeValues) {
(*v) = RandomFloatingPointRange<T>(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
break;
}
MOZ_FALLTHROUGH;
default:
(*v) = RandomFloatingPoint<T>();
}
}
/**
* FuzzStringType mutates an incercepted string type of a pickled message.
*/
template <typename T>
void FuzzStringType(T& v, const T& literal1, const T& literal2)
{
switch (random() % 5) {
case 4:
v = v + v;
MOZ_FALLTHROUGH;
case 3:
v = v + v;
MOZ_FALLTHROUGH;
case 2:
v = v + v;
break;
case 1:
v += literal1;
break;
case 0:
v = literal2;
break;
}
}
Faulty::Faulty()
// Mutate messages as a blob.
: mFuzzMessages(!!PR_GetEnv("FAULTY_MESSAGES"))
// Enables the strategy for fuzzing pipes.
, mFuzzPipes(!!PR_GetEnv("FAULTY_PIPE"))
// Enables the strategy for fuzzing pickled messages.
, mFuzzPickle(!!PR_GetEnv("FAULTY_PICKLE"))
// Uses very large values while fuzzing pickled messages.
// This may cause a high amount of malloc_abort() / NS_ABORT_OOM crashes.
, mUseLargeValues(!!PR_GetEnv("FAULTY_LARGE_VALUES"))
// Use the provided blacklist as whitelist.
, mUseAsWhitelist(!!PR_GetEnv("FAULTY_AS_WHITELIST"))
// Sets up our target process.
, mIsValidProcessType(IsValidProcessType())
{
if (mIsValidProcessType) {
FAULTY_LOG("Initializing for new process of type '%s' with pid %u.",
XRE_ChildProcessTypeToString(XRE_GetProcessType()),
getpid());
/* Setup random seed. */
const char* userSeed = PR_GetEnv("FAULTY_SEED");
unsigned long randomSeed = static_cast<unsigned long>(PR_IntervalNow());
if (userSeed) {
long n = std::strtol(userSeed, nullptr, 10);
if (n != 0) {
randomSeed = static_cast<unsigned long>(n);
}
}
srandom(randomSeed);
/* Setup directory for dumping messages. */
mMessagePath = PR_GetEnv("FAULTY_MESSAGE_PATH");
if (mMessagePath && *mMessagePath) {
if (CreateOutputDirectory(mMessagePath) != NS_OK) {
mMessagePath = nullptr;
}
}
/* Set IPC messages blacklist. */
mBlacklistPath = PR_GetEnv("FAULTY_BLACKLIST");
if (mBlacklistPath && *mBlacklistPath) {
FAULTY_LOG("* Using message blacklist = %s", mBlacklistPath);
}
FAULTY_LOG("* Fuzzing strategy: messages = %s", mFuzzMessages ? "enabled" : "disabled");
FAULTY_LOG("* Fuzzing strategy: pickle = %s", mFuzzPickle ? "enabled" : "disabled");
FAULTY_LOG("* Fuzzing strategy: pipe = %s", mFuzzPipes ? "enabled" : "disabled");
FAULTY_LOG("* Fuzzing probability = %u", sDefaultProbability);
FAULTY_LOG("* Fuzzing mutation factor = %u", MutationFactor());
FAULTY_LOG("* RNG seed = %lu", randomSeed);
sMsgCounter = 0;
}
}
// static
bool
Faulty::IsValidProcessType(void)
{
bool isValidProcessType;
const bool targetChildren = !!PR_GetEnv("FAULTY_CHILDREN");
const bool targetParent = !!PR_GetEnv("FAULTY_PARENT");
unsigned short int currentProcessType = XRE_GetProcessType();
if (targetChildren && !targetParent) {
// Fuzz every child process type but not the parent process.
isValidProcessType = currentProcessType == GeckoProcessType_Default;
} else if (!targetChildren && targetParent
&& (currentProcessType == GeckoProcessType_Plugin
|| currentProcessType == GeckoProcessType_Content
|| currentProcessType == GeckoProcessType_GMPlugin
|| currentProcessType == GeckoProcessType_GPU
|| currentProcessType == GeckoProcessType_PDFium)) {
// Fuzz inside any of the above child process only.
isValidProcessType = true;
} else if (targetChildren && targetParent) {
// Fuzz every process type.
isValidProcessType = true;
} else {
// Fuzz no process type at all.
isValidProcessType = false;
}
if (!isValidProcessType) {
FAULTY_LOG("Disabled for this process of type '%s' with pid %d.",
XRE_ChildProcessTypeToString(XRE_GetProcessType()),
getpid());
}
return isValidProcessType;
}
// static
unsigned int
Faulty::DefaultProbability(void)
{
// Defines the likelihood of fuzzing a message.
const char* probability = PR_GetEnv("FAULTY_PROBABILITY");
if (probability) {
long n = std::strtol(probability, nullptr, 10);
if (n != 0) {
return n;
}
}
return FAULTY_DEFAULT_PROBABILITY;
}
// static
bool
Faulty::Logging(void)
{
// Enables logging of sendmsg() calls even in optimized builds.
return !!PR_GetEnv("FAULTY_ENABLE_LOGGING");
}
// static
uint32_t
Faulty::MutationFactor()
{
static uint64_t sPropValue = FAULTY_DEFAULT_MUTATION_FACTOR;
static bool sInitialized = false;
if (sInitialized) {
return sPropValue;
}
sInitialized = true;
const char* factor = PR_GetEnv("FAULTY_MUTATION_FACTOR");
if (factor) {
long n = strtol(factor, nullptr, 10);
if (n != 0) {
sPropValue = n;
return sPropValue;
}
}
return sPropValue;
}
//
// Strategy: Pipes
//
void
Faulty::MaybeCollectAndClosePipe(int aPipe, unsigned int aProbability)
{
if (!mFuzzPipes) {
return;
}
if (aPipe > -1) {
FAULTY_LOG("Collecting pipe %d to bucket of pipes (count: %ld)",
aPipe, mFds.size());
mFds.insert(aPipe);
}
if (mFds.size() > 0 && FuzzingTraits::Sometimes(aProbability)) {
std::set<int>::iterator it(mFds.begin());
std::advance(it, FuzzingTraits::Random(mFds.size()));
FAULTY_LOG("Trying to close collected pipe: %d", *it);
errno = 0;
while ((close(*it) == -1 && (errno == EINTR))) {
;
}
FAULTY_LOG("Pipe status after attempt to close: %d", errno);
mFds.erase(it);
}
}
//
// Strategy: Pickle
//
void
Faulty::MutateBool(bool* aValue)
{
*aValue = !(*aValue);
}
void
Faulty::FuzzBool(bool* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
bool oldValue = *aValue;
MutateBool(aValue);
FAULTY_LOG("Message field |bool| of value: %d mutated to: %d",
(int)oldValue, (int)*aValue);
}
}
}
void
Faulty::MutateChar(char* aValue)
{
FuzzIntegralType<char>(aValue, true);
}
void
Faulty::FuzzChar(char* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
char oldValue = *aValue;
MutateChar(aValue);
FAULTY_LOG("Message field |char| of value: %c mutated to: %c",
oldValue, *aValue);
}
}
}
void
Faulty::MutateUChar(unsigned char* aValue)
{
FuzzIntegralType<unsigned char>(aValue, true);
}
void
Faulty::FuzzUChar(unsigned char* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
unsigned char oldValue = *aValue;
MutateUChar(aValue);
FAULTY_LOG("Message field |unsigned char| of value: %u mutated to: %u",
oldValue, *aValue);
}
}
}
void
Faulty::MutateInt16(int16_t* aValue)
{
FuzzIntegralType<int16_t>(aValue, true);
}
void
Faulty::FuzzInt16(int16_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
int16_t oldValue = *aValue;
MutateInt16(aValue);
FAULTY_LOG("Message field |int16| of value: %d mutated to: %d",
oldValue, *aValue);
}
}
}
void
Faulty::MutateUInt16(uint16_t* aValue)
{
FuzzIntegralType<uint16_t>(aValue, true);
}
void
Faulty::FuzzUInt16(uint16_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
uint16_t oldValue = *aValue;
MutateUInt16(aValue);
FAULTY_LOG("Message field |uint16| of value: %d mutated to: %d",
oldValue, *aValue);
}
}
}
void
Faulty::MutateInt(int* aValue)
{
FuzzIntegralType<int>(aValue, mUseLargeValues);
}
void
Faulty::FuzzInt(int* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
int oldValue = *aValue;
MutateInt(aValue);
FAULTY_LOG("Message field |int| of value: %d mutated to: %d",
oldValue, *aValue);
}
}
}
void
Faulty::MutateUInt32(uint32_t* aValue)
{
FuzzIntegralType<uint32_t>(aValue, mUseLargeValues);
}
void
Faulty::FuzzUInt32(uint32_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
uint32_t oldValue = *aValue;
MutateUInt32(aValue);
FAULTY_LOG("Message field |uint32| of value: %u mutated to: %u",
oldValue, *aValue);
}
}
}
void
Faulty::MutateLong(long* aValue)
{
FuzzIntegralType<long>(aValue, mUseLargeValues);
}
void
Faulty::FuzzLong(long* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
long oldValue = *aValue;
MutateLong(aValue);
FAULTY_LOG("Message field |long| of value: %ld mutated to: %ld",
oldValue, *aValue);
}
}
}
void
Faulty::MutateULong(unsigned long* aValue)
{
FuzzIntegralType<unsigned long>(aValue, mUseLargeValues);
}
void
Faulty::FuzzULong(unsigned long* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
unsigned long oldValue = *aValue;
MutateULong(aValue);
FAULTY_LOG("Message field |unsigned long| of value: %lu mutated to: %lu",
oldValue, *aValue);
}
}
}
void
Faulty::MutateSize(size_t* aValue)
{
FuzzIntegralType<size_t>(aValue, mUseLargeValues);
}
void
Faulty::FuzzSize(size_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
size_t oldValue = *aValue;
MutateSize(aValue);
FAULTY_LOG("Message field |size_t| of value: %zu mutated to: %zu",
oldValue, *aValue);
}
}
}
void
Faulty::MutateUInt64(uint64_t* aValue)
{
FuzzIntegralType<uint64_t>(aValue, mUseLargeValues);
}
void
Faulty::FuzzUInt64(uint64_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
uint64_t oldValue = *aValue;
MutateUInt64(aValue);
FAULTY_LOG("Message field |uint64| of value: %" PRIu64 " mutated to: %" PRIu64,
oldValue, *aValue);
}
}
}
void
Faulty::MutateInt64(int64_t* aValue)
{
FuzzIntegralType<int64_t>(aValue, mUseLargeValues);
}
void
Faulty::FuzzInt64(int64_t* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
int64_t oldValue = *aValue;
MutateInt64(aValue);
FAULTY_LOG("Message field |int64| of value: %" PRIu64 " mutated to: %" PRIu64,
oldValue, *aValue);
}
}
}
void
Faulty::MutateDouble(double* aValue)
{
FuzzFloatingPointType<double>(aValue, mUseLargeValues);
}
void
Faulty::FuzzDouble(double* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
double oldValue = *aValue;
MutateDouble(aValue);
FAULTY_LOG("Message field |double| of value: %f mutated to: %f",
oldValue, *aValue);
}
}
}
void
Faulty::MutateFloat(float* aValue)
{
FuzzFloatingPointType<float>(aValue, mUseLargeValues);
}
void
Faulty::FuzzFloat(float* aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
float oldValue = *aValue;
MutateFloat(aValue);
FAULTY_LOG("Message field |float| of value: %f mutated to: %f",
oldValue, *aValue);
}
}
}
void
Faulty::FuzzString(std::string& aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
std::string oldValue = aValue;
FuzzStringType<std::string>(aValue, "xoferiF", std::string());
FAULTY_LOG("Message field |string| of value: %s mutated to: %s",
oldValue.c_str(), aValue.c_str());
}
}
}
void
Faulty::FuzzWString(std::wstring& aValue, unsigned int aProbability)
{
if (mIsValidProcessType) {
if (mFuzzPickle && FuzzingTraits::Sometimes(aProbability)) {
std::wstring oldValue = aValue;
FAULTY_LOG("Message field |wstring|");
FuzzStringType<std::wstring>(aValue, L"xoferiF", std::wstring());
}
}
}
// static
nsresult
Faulty::CreateOutputDirectory(const char *aPathname) {
nsCOMPtr<nsIFile> path;
bool exists;
nsresult rv;
rv = NS_NewNativeLocalFile(nsDependentCString(aPathname),
true,
getter_AddRefs(path));
rv = path->Exists(&exists);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
if (!exists) {
rv = path->Create(nsIFile::DIRECTORY_TYPE, 0755);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
return NS_OK;
}
/* static */
nsresult
Faulty::ReadFile(const char* aPathname, nsTArray<nsCString> &aArray)
{
nsresult rv;
nsCOMPtr<nsIFile> file;
rv = NS_NewLocalFile(NS_ConvertUTF8toUTF16(aPathname),
true,
getter_AddRefs(file));
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
bool exists = false;
rv = file->Exists(&exists);
if (NS_WARN_IF(NS_FAILED(rv)) || !exists) {
return rv;
}
nsCOMPtr<nsIFileInputStream> fileStream(
do_CreateInstance(NS_LOCALFILEINPUTSTREAM_CONTRACTID, &rv));
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = fileStream->Init(file, -1, -1, 0);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
nsCOMPtr<nsILineInputStream> lineStream(do_QueryInterface(fileStream, &rv));
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
nsAutoCString line;
bool more = true;
do {
rv = lineStream->ReadLine(line, &more);
if (line.IsEmpty()) {
continue;
}
if (line.CharAt(0) == '#') {
/* Ignore comments. */
continue;
}
aArray.AppendElement(line);
} while (more);
file.forget();
return NS_OK;
}
bool
Faulty::IsMessageNameBlacklisted(const char *aMessageName) {
static bool sFileLoaded = false;
static nsTArray<nsCString> sMessageBlacklist;
if (!sFileLoaded && mBlacklistPath) {
/* Run ReadFile() on the main thread to prevent
MOZ_ASSERT(NS_IsMainThread()) in nsStandardURL via nsNetStartup(). */
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"Fuzzer::ReadBlacklistOnMainThread",
[&]() {
if (Faulty::ReadFile(mBlacklistPath, sMessageBlacklist) != NS_OK) {
sFileLoaded = false;
} else {
sFileLoaded = true;
}
}
);
NS_DispatchToMainThread(r.forget(), NS_DISPATCH_SYNC);
}
if (!sFileLoaded) {
return false;
}
if (sMessageBlacklist.Length() == 0) {
return false;
}
return sMessageBlacklist.Contains(aMessageName);
}
// static
std::vector<uint8_t>
Faulty::GetDataFromIPCMessage(IPC::Message* aMsg)
{
const Pickle::BufferList& buffers = aMsg->Buffers();
std::vector<uint8_t> data;
data.reserve(buffers.Size());
Pickle::BufferList::IterImpl i = buffers.Iter();
while (!i.Done()) {
size_t s = i.RemainingInSegment();
data.insert(data.end(), i.Data(), i.Data() + s);
i.Advance(buffers, s);
}
return data;
}
// static
void
Faulty::CopyFDs(IPC::Message* aDstMsg, IPC::Message* aSrcMsg) {
FileDescriptorSet* dstFdSet = aDstMsg->file_descriptor_set();
FileDescriptorSet* srcFdSet = aSrcMsg->file_descriptor_set();
for (size_t i = 0; i < srcFdSet->size(); i++) {
int fd = srcFdSet->GetDescriptorAt(i);
dstFdSet->Add(fd);
}
}
IPC::Message *
Faulty::MutateIPCMessage(const char *aChannel, IPC::Message* aMsg, unsigned int aProbability) {
if (!mIsValidProcessType || !mFuzzMessages) {
return aMsg;
}
sMsgCounter += 1;
LogMessage(aChannel, aMsg);
/* Skip immediately if we shall not try to fuzz this message. */
if (!FuzzingTraits::Sometimes(aProbability)) {
return aMsg;
}
const bool isMessageListed = IsMessageNameBlacklisted(aMsg->name());
/* Check if this message is blacklisted and shall not get fuzzed. */
if (isMessageListed && !mUseAsWhitelist) {
FAULTY_LOG("BLACKLISTED: %s", aMsg->name());
return aMsg;
}
/* Check if the message is whitelisted. */
if (!isMessageListed && mUseAsWhitelist) {
/* Silently skip this message. */
return aMsg;
}
/* Retrieve BufferLists as data from original message. */
std::vector<uint8_t> data(GetDataFromIPCMessage(aMsg));
/* Check if there is enough data in the message to fuzz. */
uint32_t headerSize = aMsg->HeaderSizeFromData(nullptr, nullptr);
if (headerSize == data.size()) {
FAULTY_LOG("IGNORING: %s", aMsg->name());
return aMsg;
}
/* Mutate the message data. */
size_t maxMutations = FuzzingTraits::Frequency(data.size(), MutationFactor());
FAULTY_LOG("FUZZING (%zu bytes): %s", maxMutations, aMsg->name());
while (maxMutations--) {
/* Ignore the header data of the message. */
uint32_t pos = RandomIntegerRange<uint32_t>(headerSize, data.size() - 1);
switch (FuzzingTraits::Random(6)) {
case 0:
break;
case 1:
data.at(pos) = RandomIntegerRange<uint8_t>(0, 1);
break;
case 2:
data.at(pos) ^= (1 << RandomIntegerRange<uint8_t>(0, 8));
break;
default:
data.at(pos) = RandomIntegerRange<uint8_t>(255, 255);
}
}
/* Build new message. */
auto *mutatedMsg = new IPC::Message(reinterpret_cast<const char*>(data.data()), data.size());
CopyFDs(mutatedMsg, aMsg);
/* Dump original message for diff purposes. */
DumpMessage(aChannel, aMsg, nsPrintfCString(".%zu.o", sMsgCounter).get());
/* Dump mutated message for diff purposes. */
DumpMessage(aChannel, mutatedMsg, nsPrintfCString(".%zu.m", sMsgCounter).get());
delete aMsg;
return mutatedMsg;
}
void
Faulty::LogMessage(const char* aChannel, IPC::Message* aMsg) {
if (!mIsValidProcessType) {
return;
}
std::string fileName = nsPrintfCString("message.%u.%zu",
getpid(), sMsgCounter).get();
FAULTY_LOG("Process: %u | Size: %10zu | %-20s | %s => %s",
XRE_GetProcessType(),
aMsg->Buffers().Size(),
fileName.c_str(),
aChannel,
aMsg->name());
}
void
Faulty::DumpMessage(const char *aChannel, IPC::Message* aMsg, std::string aAppendix)
{
if (!mIsValidProcessType || !mMessagePath) {
return;
}
std::vector<uint8_t> data(GetDataFromIPCMessage(aMsg));
std::string fileName;
if (!aAppendix.empty()) {
fileName = nsPrintfCString("%s/message.%u%s",
mMessagePath, getpid(), aAppendix.c_str()).get();
} else {
fileName = nsPrintfCString("%s/%s",
mMessagePath, fileName.c_str()).get();
}
std::fstream fp;
fp.open(fileName, std::fstream::out | std::fstream::binary);
fp.write(reinterpret_cast<const char*>(data.data()), data.size());
fp.close();
}
} // namespace ipc
} // namespace mozilla