Compressing C++ unit tests is a long pole when writing test archives.
Experimenting with various levels of compression revealed that
compression level 9 was providing minimal space savings for
significantly longer archiving times and greater CPU usage.
Results of our experimentation of `make -sj8 package-tests` on OS X
with various levels of compression are below. Note: these numbers were
accidentally obtained without JS tests being archived. This skews the
results a little but doesn't impact the analysis below.
ARCHIVE SIZE WALL CPU
(L=9)
cppunittest 76,806,629 30.6s
mochitest 61,276,928 9.4s
reftest 31,204,396 11.0s
ALL 228,146,761 31.2s 75.9s
(L=8)
cppunittest 76,851,593 24.1s
mochitest 61,279,322 8.9s
reftest 31,207,867 10.4s
ALL 228,228,096 24.9s 64.7s
(L=7)
cppunittest 77,102,292 14.3s
mochitest 61,305,147 8.2s
reftest 31,260,359 9.4s
ALL 228,717,803 15.0s 49.1s
(L=6)
cppunittest 77,321,408 11.5s
mochitest 61,336,539 8.2s
reftest 31,303,604 9.2s
ALL 229,123,307 12.2s 44.7s
(L=5)
cppunittest 78,226,404 8.2s
mochitest 61,483,804 7.6s
reftest 31,509,349 8.8s
ALL 230,725,600 9.6s 39.7s
(L=4)
cppunittest 79,733,669 6.3s
mochitest 61,825,519 7.6s
reftest 31,924,171 8.4s
ALL 233,669,991 9.0s 36.4s
(L=3)
cppunittest 82,380,731 5.8s
mochitest 62,554,431 7.1s
reftest 32,696,415 8.1s
ALL 239,180,168 8.9s 34.6s
Levels lower than 3 resulted in larger archives with no decreae in
wall time and marginal decrease in CPU time.
As we can see, lowering the compression level reduces archiving time by
>3x while only increasing total archive size by ~2.5 MB or ~1% for
compression level 5.
Total time hits a plateau around levels 4 and 5. After that, file size
increases faster for little decrease in wall time. I suspect that we're
hitting Python limits from having to process thousands of files: there's
only so fast Python can do I/O and make function calls.
I think choosing 4 or 5 for the new compression level are acceptable.
I went with 5 because the wall time savings from 5 to 4 are marginal and
the archive size does start to increase a bit faster at 4. That being
said, 4 does consume 10% less CPU. I could easily just 4 as well. 5 is
more conservative. We can always change to 4 after seeing results in the
wild.
The end result of this change is `make package-tests` is much faster:
Before: 228,146,761 bytes; 31.2s wall; 75.9s CPU
After: 230,725,600 bytes; 11.4s wall; 45.0s CPU
Delta: +2,578,839 bytes; -19.8s wall; -30.9s CPU
When you take the whole series into consideration:
Before: 44.2s wall; 84.6s CPU
After: 11.4s wall; 45.0s CPU
Lowering CPU is impressive considering we switched from the C `zip`
implementation to Python!
Keep in mind we were at ~78s wall before e87b74b3db43 introduced
concurrent archive generation!
And we still haven't eliminated the staging of JS tests, which are
several thousand files and a few dozen MB!
This directory contains common Python code.
The basic rule is that if Python code is cross-module (that's "module" in the
Mozilla meaning - as in "module ownership") and is MPL-compatible, it should
go here.
What should not go here:
* Python that is not MPL-compatible (see other-licenses/)
* Python that has good reason to remain close to its "owning" (Mozilla)
module (e.g. it is only being consumed from there).
Historical information can be found at
https://bugzilla.mozilla.org/show_bug.cgi?id=775243
## pyyaml | pystache
Used in taskcluster related mach commands to update download from github
and remove .git and tests.
Then run tests in taskcluster/tests/