Files
tubestation/third_party/rust/itertools/src/lib.rs

3785 lines
126 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![warn(missing_docs)]
#![crate_name="itertools"]
#![cfg_attr(not(feature = "use_std"), no_std)]
//! Extra iterator adaptors, functions and macros.
//!
//! To extend [`Iterator`] with methods in this crate, import
//! the [`Itertools`] trait:
//!
//! ```
//! use itertools::Itertools;
//! ```
//!
//! Now, new methods like [`interleave`](Itertools::interleave)
//! are available on all iterators:
//!
//! ```
//! use itertools::Itertools;
//!
//! let it = (1..3).interleave(vec![-1, -2]);
//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
//! ```
//!
//! Most iterator methods are also provided as functions (with the benefit
//! that they convert parameters using [`IntoIterator`]):
//!
//! ```
//! use itertools::interleave;
//!
//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
//! /* loop body */
//! }
//! ```
//!
//! ## Crate Features
//!
//! - `use_std`
//! - Enabled by default.
//! - Disable to compile itertools using `#![no_std]`. This disables
//! any items that depend on collections (like `group_by`, `unique`,
//! `kmerge`, `join` and many more).
//!
//! ## Rust Version
//!
//! This version of itertools requires Rust 1.32 or later.
#![doc(html_root_url="https://docs.rs/itertools/0.8/")]
#[cfg(not(feature = "use_std"))]
extern crate core as std;
#[cfg(feature = "use_alloc")]
extern crate alloc;
#[cfg(feature = "use_alloc")]
use alloc::{
string::String,
vec::Vec,
};
pub use either::Either;
use core::borrow::Borrow;
#[cfg(feature = "use_std")]
use std::collections::HashMap;
use std::iter::{IntoIterator, once};
use std::cmp::Ordering;
use std::fmt;
#[cfg(feature = "use_std")]
use std::collections::HashSet;
#[cfg(feature = "use_std")]
use std::hash::Hash;
#[cfg(feature = "use_alloc")]
use std::fmt::Write;
#[cfg(feature = "use_alloc")]
type VecIntoIter<T> = alloc::vec::IntoIter<T>;
#[cfg(feature = "use_alloc")]
use std::iter::FromIterator;
#[macro_use]
mod impl_macros;
// for compatibility with no std and macros
#[doc(hidden)]
pub use std::iter as __std_iter;
/// The concrete iterator types.
pub mod structs {
pub use crate::adaptors::{
Dedup,
DedupBy,
DedupWithCount,
DedupByWithCount,
Interleave,
InterleaveShortest,
FilterMapOk,
FilterOk,
Product,
PutBack,
Batching,
MapInto,
MapOk,
Merge,
MergeBy,
TakeWhileRef,
WhileSome,
Coalesce,
TupleCombinations,
Positions,
Update,
};
#[allow(deprecated)]
pub use crate::adaptors::{MapResults, Step};
#[cfg(feature = "use_alloc")]
pub use crate::adaptors::MultiProduct;
#[cfg(feature = "use_alloc")]
pub use crate::combinations::Combinations;
#[cfg(feature = "use_alloc")]
pub use crate::combinations_with_replacement::CombinationsWithReplacement;
pub use crate::cons_tuples_impl::ConsTuples;
pub use crate::exactly_one_err::ExactlyOneError;
pub use crate::format::{Format, FormatWith};
pub use crate::flatten_ok::FlattenOk;
#[cfg(feature = "use_std")]
pub use crate::grouping_map::{GroupingMap, GroupingMapBy};
#[cfg(feature = "use_alloc")]
pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
pub use crate::intersperse::{Intersperse, IntersperseWith};
#[cfg(feature = "use_alloc")]
pub use crate::kmerge_impl::{KMerge, KMergeBy};
pub use crate::merge_join::MergeJoinBy;
#[cfg(feature = "use_alloc")]
pub use crate::multipeek_impl::MultiPeek;
#[cfg(feature = "use_alloc")]
pub use crate::peek_nth::PeekNth;
pub use crate::pad_tail::PadUsing;
pub use crate::peeking_take_while::PeekingTakeWhile;
#[cfg(feature = "use_alloc")]
pub use crate::permutations::Permutations;
pub use crate::process_results_impl::ProcessResults;
#[cfg(feature = "use_alloc")]
pub use crate::powerset::Powerset;
#[cfg(feature = "use_alloc")]
pub use crate::put_back_n_impl::PutBackN;
#[cfg(feature = "use_alloc")]
pub use crate::rciter_impl::RcIter;
pub use crate::repeatn::RepeatN;
#[allow(deprecated)]
pub use crate::sources::{RepeatCall, Unfold, Iterate};
#[cfg(feature = "use_alloc")]
pub use crate::tee::Tee;
pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples};
#[cfg(feature = "use_std")]
pub use crate::duplicates_impl::{Duplicates, DuplicatesBy};
#[cfg(feature = "use_std")]
pub use crate::unique_impl::{Unique, UniqueBy};
pub use crate::with_position::WithPosition;
pub use crate::zip_eq_impl::ZipEq;
pub use crate::zip_longest::ZipLongest;
pub use crate::ziptuple::Zip;
}
/// Traits helpful for using certain `Itertools` methods in generic contexts.
pub mod traits {
pub use crate::tuple_impl::HomogeneousTuple;
}
#[allow(deprecated)]
pub use crate::structs::*;
pub use crate::concat_impl::concat;
pub use crate::cons_tuples_impl::cons_tuples;
pub use crate::diff::diff_with;
pub use crate::diff::Diff;
#[cfg(feature = "use_alloc")]
pub use crate::kmerge_impl::{kmerge_by};
pub use crate::minmax::MinMaxResult;
pub use crate::peeking_take_while::PeekingNext;
pub use crate::process_results_impl::process_results;
pub use crate::repeatn::repeat_n;
#[allow(deprecated)]
pub use crate::sources::{repeat_call, unfold, iterate};
pub use crate::with_position::Position;
pub use crate::unziptuple::{multiunzip, MultiUnzip};
pub use crate::ziptuple::multizip;
mod adaptors;
mod either_or_both;
pub use crate::either_or_both::EitherOrBoth;
#[doc(hidden)]
pub mod free;
#[doc(inline)]
pub use crate::free::*;
mod concat_impl;
mod cons_tuples_impl;
#[cfg(feature = "use_alloc")]
mod combinations;
#[cfg(feature = "use_alloc")]
mod combinations_with_replacement;
mod exactly_one_err;
mod diff;
mod flatten_ok;
#[cfg(feature = "use_std")]
mod extrema_set;
mod format;
#[cfg(feature = "use_std")]
mod grouping_map;
#[cfg(feature = "use_alloc")]
mod group_map;
#[cfg(feature = "use_alloc")]
mod groupbylazy;
mod intersperse;
#[cfg(feature = "use_alloc")]
mod k_smallest;
#[cfg(feature = "use_alloc")]
mod kmerge_impl;
#[cfg(feature = "use_alloc")]
mod lazy_buffer;
mod merge_join;
mod minmax;
#[cfg(feature = "use_alloc")]
mod multipeek_impl;
mod pad_tail;
#[cfg(feature = "use_alloc")]
mod peek_nth;
mod peeking_take_while;
#[cfg(feature = "use_alloc")]
mod permutations;
#[cfg(feature = "use_alloc")]
mod powerset;
mod process_results_impl;
#[cfg(feature = "use_alloc")]
mod put_back_n_impl;
#[cfg(feature = "use_alloc")]
mod rciter_impl;
mod repeatn;
mod size_hint;
mod sources;
#[cfg(feature = "use_alloc")]
mod tee;
mod tuple_impl;
#[cfg(feature = "use_std")]
mod duplicates_impl;
#[cfg(feature = "use_std")]
mod unique_impl;
mod unziptuple;
mod with_position;
mod zip_eq_impl;
mod zip_longest;
mod ziptuple;
#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
///
/// ```
/// # use itertools::iproduct;
/// #
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
/// // ..
/// }
/// # }
/// ```
macro_rules! iproduct {
(@flatten $I:expr,) => (
$I
);
(@flatten $I:expr, $J:expr, $($K:expr,)*) => (
$crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*)
);
($I:expr) => (
$crate::__std_iter::IntoIterator::into_iter($I)
);
($I:expr, $J:expr) => (
$crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J))
);
($I:expr, $J:expr, $($K:expr),+) => (
$crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+)
);
}
#[macro_export]
/// Create an iterator running multiple iterators in lockstep.
///
/// The `izip!` iterator yields elements until any subiterator
/// returns `None`.
///
/// This is a version of the standard ``.zip()`` that's supporting more than
/// two iterators. The iterator element type is a tuple with one element
/// from each of the input iterators. Just like ``.zip()``, the iteration stops
/// when the shortest of the inputs reaches its end.
///
/// **Note:** The result of this macro is in the general case an iterator
/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
/// The special cases of one and two arguments produce the equivalent of
/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
///
/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
/// of using the standard library `.zip()`.
///
/// ```
/// # use itertools::izip;
/// #
/// # fn main() {
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// # }
/// ```
macro_rules! izip {
// @closure creates a tuple-flattening closure for .map() call. usage:
// @closure partial_pattern => partial_tuple , rest , of , iterators
// eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
( @closure $p:pat => $tup:expr ) => {
|$p| $tup
};
// The "b" identifier is a different identifier on each recursion level thanks to hygiene.
( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
$crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
};
// unary
($first:expr $(,)*) => {
$crate::__std_iter::IntoIterator::into_iter($first)
};
// binary
($first:expr, $second:expr $(,)*) => {
$crate::izip!($first)
.zip($second)
};
// n-ary where n > 2
( $first:expr $( , $rest:expr )* $(,)* ) => {
$crate::izip!($first)
$(
.zip($rest)
)*
.map(
$crate::izip!(@closure a => (a) $( , $rest )*)
)
};
}
#[macro_export]
/// [Chain][`chain`] zero or more iterators together into one sequence.
///
/// The comma-separated arguments must implement [`IntoIterator`].
/// The final argument may be followed by a trailing comma.
///
/// [`chain`]: Iterator::chain
///
/// # Examples
///
/// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]:
/// ```
/// use std::iter;
/// use itertools::chain;
///
/// let _: iter::Empty<()> = chain!();
/// let _: iter::Empty<i8> = chain!();
/// ```
///
/// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator):
/// ```
/// use std::{ops::Range, slice};
/// use itertools::chain;
/// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional!
/// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]);
/// ```
///
/// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each
/// argument, and then [`chain`] them together:
/// ```
/// use std::{iter::*, ops::Range, slice};
/// use itertools::{assert_equal, chain};
///
/// // e.g., this:
/// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
/// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],];
///
/// // ...is equivalent to this:
/// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
/// once(&0)
/// .chain(repeat(&1).take(2))
/// .chain(&[2, 3, 5]);
///
/// assert_equal(with_macro, with_method);
/// ```
macro_rules! chain {
() => {
core::iter::empty()
};
($first:expr $(, $rest:expr )* $(,)?) => {
{
let iter = core::iter::IntoIterator::into_iter($first);
$(
let iter =
core::iter::Iterator::chain(
iter,
core::iter::IntoIterator::into_iter($rest));
)*
iter
}
};
}
/// An [`Iterator`] blanket implementation that provides extra adaptors and
/// methods.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an iterator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [`.interleave()`](Itertools::interleave)
///
/// * *Regular methods* are those that don't return iterators and instead
/// return a regular value of some other kind.
/// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular
/// method in the list.
pub trait Itertools : Iterator {
// adaptors
/// Alternate elements from two iterators until both have run out.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
/// ```
fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
where J: IntoIterator<Item = Self::Item>,
Self: Sized
{
interleave(self, other)
}
/// Alternate elements from two iterators until at least one of them has run
/// out.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave_shortest(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
/// ```
fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
where J: IntoIterator<Item = Self::Item>,
Self: Sized
{
adaptors::interleave_shortest(self, other.into_iter())
}
/// An iterator adaptor to insert a particular value
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
/// ```
fn intersperse(self, element: Self::Item) -> Intersperse<Self>
where Self: Sized,
Self::Item: Clone
{
intersperse::intersperse(self, element)
}
/// An iterator adaptor to insert a particular value created by a function
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let mut i = 10;
/// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]);
/// assert_eq!(i, 8);
/// ```
fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F>
where Self: Sized,
F: FnMut() -> Self::Item
{
intersperse::intersperse_with(self, element)
}
/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of two optional elements.
///
/// This iterator is *fused*.
///
/// As long as neither input iterator is exhausted yet, it yields two values
/// via `EitherOrBoth::Both`.
///
/// When the parameter iterator is exhausted, it only yields a value from the
/// `self` iterator via `EitherOrBoth::Left`.
///
/// When the `self` iterator is exhausted, it only yields a value from the
/// parameter iterator via `EitherOrBoth::Right`.
///
/// When both iterators return `None`, all further invocations of `.next()`
/// will return `None`.
///
/// Iterator element type is
/// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth).
///
/// ```rust
/// use itertools::EitherOrBoth::{Both, Right};
/// use itertools::Itertools;
/// let it = (0..1).zip_longest(1..3);
/// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
/// ```
#[inline]
fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
where J: IntoIterator,
Self: Sized
{
zip_longest::zip_longest(self, other.into_iter())
}
/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of elements.
///
/// **Panics** if the iterators reach an end and they are not of equal
/// lengths.
#[inline]
fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
where J: IntoIterator,
Self: Sized
{
zip_eq(self, other)
}
/// A “meta iterator adaptor”. Its closure receives a reference to the
/// iterator and may pick off as many elements as it likes, to produce the
/// next iterator element.
///
/// Iterator element type is `B`.
///
/// ```
/// use itertools::Itertools;
///
/// // An adaptor that gathers elements in pairs
/// let pit = (0..4).batching(|it| {
/// match it.next() {
/// None => None,
/// Some(x) => match it.next() {
/// None => None,
/// Some(y) => Some((x, y)),
/// }
/// }
/// });
///
/// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
/// ```
///
fn batching<B, F>(self, f: F) -> Batching<Self, F>
where F: FnMut(&mut Self) -> Option<B>,
Self: Sized
{
adaptors::batching(self, f)
}
/// Return an *iterable* that can group iterator elements.
/// Consecutive elements that map to the same key (“runs”), are assigned
/// to the same group.
///
/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in order, or if each group's iterator is
/// dropped without keeping it around, then `GroupBy` uses no
/// allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `(K, Group)`: the group's key and the
/// group iterator.
///
/// ```
/// use itertools::Itertools;
///
/// // group data into runs of larger than zero or not.
/// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |---->|------>|--------->|
///
/// // Note: The `&` is significant here, `GroupBy` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// let mut data_grouped = Vec::new();
/// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
#[cfg(feature = "use_alloc")]
fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
where Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq,
{
groupbylazy::new(self, key)
}
/// Return an *iterable* that can chunk the iterator.
///
/// Yield subiterators (chunks) that each yield a fixed number elements,
/// determined by `size`. The last chunk will be shorter if there aren't
/// enough elements.
///
/// `IntoChunks` is based on `GroupBy`: it is iterable (implements
/// `IntoIterator`, **not** `Iterator`), and it only buffers if several
/// chunk iterators are alive at the same time.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// **Panics** if `size` is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
/// //chunk size=3 |------->|-------->|--->|
///
/// // Note: The `&` is significant here, `IntoChunks` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// for chunk in &data.into_iter().chunks(3) {
/// // Check that the sum of each chunk is 4.
/// assert_eq!(4, chunk.sum());
/// }
/// ```
#[cfg(feature = "use_alloc")]
fn chunks(self, size: usize) -> IntoChunks<Self>
where Self: Sized,
{
assert!(size != 0);
groupbylazy::new_chunks(self, size)
}
/// Return an iterator over all contiguous windows producing tuples of
/// a specific size (up to 12).
///
/// `tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
///
/// // pairwise iteration
/// for (a, b) in (1..5).tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
///
/// let mut it = (1..5).tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).tuple_windows::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
///
/// // you can also specify the complete type
/// use itertools::TupleWindows;
/// use std::ops::Range;
///
/// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
/// ```
fn tuple_windows<T>(self) -> TupleWindows<Self, T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple,
T::Item: Clone
{
tuple_impl::tuple_windows(self)
}
/// Return an iterator over all windows, wrapping back to the first
/// elements when the window would otherwise exceed the length of the
/// iterator, producing tuples of a specific size (up to 12).
///
/// `circular_tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).circular_tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]);
///
/// let mut it = (1..5).circular_tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(Some((3, 4, 1)), it.next());
/// assert_eq!(Some((4, 1, 2)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).circular_tuple_windows::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]);
/// ```
fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T>
where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator,
T: tuple_impl::TupleCollect + Clone,
T::Item: Clone
{
tuple_impl::circular_tuple_windows(self)
}
/// Return an iterator that groups the items in tuples of a specific size
/// (up to 12).
///
/// See also the method [`.next_tuple()`](Itertools::next_tuple).
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).tuples() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (3, 4)]);
///
/// let mut it = (1..7).tuples();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((4, 5, 6)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..7).tuples::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
///
/// // you can also specify the complete type
/// use itertools::Tuples;
/// use std::ops::Range;
///
/// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
/// ```
///
/// See also [`Tuples::into_buffer`].
fn tuples<T>(self) -> Tuples<Self, T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple
{
tuple_impl::tuples(self)
}
/// Split into an iterator pair that both yield all elements from
/// the original iterator.
///
/// **Note:** If the iterator is clonable, prefer using that instead
/// of using this method. Cloning is likely to be more efficient.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
/// let xs = vec![0, 1, 2, 3];
///
/// let (mut t1, t2) = xs.into_iter().tee();
/// itertools::assert_equal(t1.next(), Some(0));
/// itertools::assert_equal(t2, 0..4);
/// itertools::assert_equal(t1, 1..4);
/// ```
#[cfg(feature = "use_alloc")]
fn tee(self) -> (Tee<Self>, Tee<Self>)
where Self: Sized,
Self::Item: Clone
{
tee::new(self)
}
/// Return an iterator adaptor that steps `n` elements in the base iterator
/// for each iteration.
///
/// The iterator steps by yielding the next element from the base iterator,
/// then skipping forward `n - 1` elements.
///
/// Iterator element type is `Self::Item`.
///
/// **Panics** if the step is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..8).step(3);
/// itertools::assert_equal(it, vec![0, 3, 6]);
/// ```
#[deprecated(note="Use std .step_by() instead", since="0.8.0")]
#[allow(deprecated)]
fn step(self, n: usize) -> Step<Self>
where Self: Sized
{
adaptors::step(self, n)
}
/// Convert each item of the iterator using the [`Into`] trait.
///
/// ```rust
/// use itertools::Itertools;
///
/// (1i32..42i32).map_into::<f64>().collect_vec();
/// ```
fn map_into<R>(self) -> MapInto<Self, R>
where Self: Sized,
Self::Item: Into<R>,
{
adaptors::map_into(self)
}
/// See [`.map_ok()`](Itertools::map_ok).
#[deprecated(note="Use .map_ok() instead", since="0.10.0")]
fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
{
self.map_ok(f)
}
/// Return an iterator adaptor that applies the provided closure
/// to every `Result::Ok` value. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(41), Err(false), Ok(11)];
/// let it = input.into_iter().map_ok(|i| i + 1);
/// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
/// ```
fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
{
adaptors::map_ok(self, f)
}
/// Return an iterator adaptor that filters every `Result::Ok`
/// value with the provided closure. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_ok(|&i| i > 20);
/// itertools::assert_equal(it, vec![Ok(22), Err(false)]);
/// ```
fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(&T) -> bool,
{
adaptors::filter_ok(self, f)
}
/// Return an iterator adaptor that filters and transforms every
/// `Result::Ok` value with the provided closure. `Result::Err`
/// values are unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None });
/// itertools::assert_equal(it, vec![Ok(44), Err(false)]);
/// ```
fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> Option<U>,
{
adaptors::filter_map_ok(self, f)
}
/// Return an iterator adaptor that flattens every `Result::Ok` value into
/// a series of `Result::Ok` values. `Result::Err` values are unchanged.
///
/// This is useful when you have some common error type for your crate and
/// need to propagate it upwards, but the `Result::Ok` case needs to be flattened.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(0..2), Err(false), Ok(2..4)];
/// let it = input.iter().cloned().flatten_ok();
/// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]);
///
/// // This can also be used to propagate errors when collecting.
/// let output_result: Result<Vec<i32>, bool> = it.collect();
/// assert_eq!(output_result, Err(false));
/// ```
fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E>
where Self: Iterator<Item = Result<T, E>> + Sized,
T: IntoIterator
{
flatten_ok::flatten_ok(self)
}
/// Return an iterator adaptor that merges the two base iterators in
/// ascending order. If both base iterators are sorted (ascending), the
/// result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..11).step(3);
/// let b = (0..11).step(5);
/// let it = a.merge(b);
/// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
/// ```
fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
where Self: Sized,
Self::Item: PartialOrd,
J: IntoIterator<Item = Self::Item>
{
merge(self, other)
}
/// Return an iterator adaptor that merges the two base iterators in order.
/// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering.
///
/// This can be especially useful for sequences of tuples.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..).zip("bc".chars());
/// let b = (0..).zip("ad".chars());
/// let it = a.merge_by(b, |x, y| x.1 <= y.1);
/// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
/// ```
fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
where Self: Sized,
J: IntoIterator<Item = Self::Item>,
F: FnMut(&Self::Item, &Self::Item) -> bool
{
adaptors::merge_by_new(self, other.into_iter(), is_first)
}
/// Create an iterator that merges items from both this and the specified
/// iterator in ascending order.
///
/// It chooses whether to pair elements based on the `Ordering` returned by the
/// specified compare function. At any point, inspecting the tip of the
/// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
/// `J::Item` respectively, the resulting iterator will:
///
/// - Emit `EitherOrBoth::Left(i)` when `i < j`,
/// and remove `i` from its source iterator
/// - Emit `EitherOrBoth::Right(j)` when `i > j`,
/// and remove `j` from its source iterator
/// - Emit `EitherOrBoth::Both(i, j)` when `i == j`,
/// and remove both `i` and `j` from their respective source iterators
///
/// ```
/// use itertools::Itertools;
/// use itertools::EitherOrBoth::{Left, Right, Both};
///
/// let multiples_of_2 = (0..10).step(2);
/// let multiples_of_3 = (0..10).step(3);
///
/// itertools::assert_equal(
/// multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)),
/// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)]
/// );
/// ```
#[inline]
fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
where J: IntoIterator,
F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
Self: Sized
{
merge_join_by(self, other, cmp_fn)
}
/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them in ascending order.
///
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..6).step(3);
/// let b = (1..6).step(3);
/// let c = (2..6).step(3);
/// let it = vec![a, b, c].into_iter().kmerge();
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
/// ```
#[cfg(feature = "use_alloc")]
fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
where Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: PartialOrd,
{
kmerge(self)
}
/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them according to the given closure.
///
/// The closure `first` is called with two elements *a*, *b* and should
/// return `true` if *a* is ordered before *b*.
///
/// If all base iterators are sorted according to `first`, the result is
/// sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = vec![-1f64, 2., 3., -5., 6., -7.];
/// let b = vec![0., 2., -4.];
/// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
/// assert_eq!(it.next(), Some(0.));
/// assert_eq!(it.last(), Some(-7.));
/// ```
#[cfg(feature = "use_alloc")]
fn kmerge_by<F>(self, first: F)
-> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
where Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item,
&<Self::Item as IntoIterator>::Item) -> bool
{
kmerge_by(self, first)
}
/// Return an iterator adaptor that iterates over the cartesian product of
/// the element sets of two iterators `self` and `J`.
///
/// Iterator element type is `(Self::Item, J::Item)`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..2).cartesian_product("αβ".chars());
/// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
/// ```
fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
where Self: Sized,
Self::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone
{
adaptors::cartesian_product(self, other.into_iter())
}
/// Return an iterator adaptor that iterates over the cartesian product of
/// all subiterators returned by meta-iterator `self`.
///
/// All provided iterators must yield the same `Item` type. To generate
/// the product of iterators yielding multiple types, use the
/// [`iproduct`] macro instead.
///
///
/// The iterator element type is `Vec<T>`, where `T` is the iterator element
/// of the subiterators.
///
/// ```
/// use itertools::Itertools;
/// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
/// .multi_cartesian_product();
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
/// assert_eq!(multi_prod.next(), None);
/// ```
#[cfg(feature = "use_alloc")]
fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
where Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone
{
adaptors::multi_cartesian_product(self)
}
/// Return an iterator adaptor that uses the passed-in closure to
/// optionally merge together consecutive elements.
///
/// The closure `f` is passed two elements, `previous` and `current` and may
/// return either (1) `Ok(combined)` to merge the two values or
/// (2) `Err((previous', current'))` to indicate they can't be merged.
/// In (2), the value `previous'` is emitted by the iterator.
/// Either (1) `combined` or (2) `current'` becomes the previous value
/// when coalesce continues with the next pair of elements to merge. The
/// value that remains at the end is also emitted by the iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// // sum same-sign runs together
/// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
/// itertools::assert_equal(data.into_iter().coalesce(|x, y|
/// if (x >= 0.) == (y >= 0.) {
/// Ok(x + y)
/// } else {
/// Err((x, y))
/// }),
/// vec![-6., 4., -1.]);
/// ```
fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
where Self: Sized,
F: FnMut(Self::Item, Self::Item)
-> Result<Self::Item, (Self::Item, Self::Item)>
{
adaptors::coalesce(self, f)
}
/// Remove duplicates from sections of consecutive identical elements.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1., 1., 2., 3., 3., 2., 2.];
/// itertools::assert_equal(data.into_iter().dedup(),
/// vec![1., 2., 3., 2.]);
/// ```
fn dedup(self) -> Dedup<Self>
where Self: Sized,
Self::Item: PartialEq,
{
adaptors::dedup(self)
}
/// Remove duplicates from sections of consecutive identical elements,
/// determining equality using a comparison function.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)];
/// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1),
/// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]);
/// ```
fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp>
where Self: Sized,
Cmp: FnMut(&Self::Item, &Self::Item)->bool,
{
adaptors::dedup_by(self, cmp)
}
/// Remove duplicates from sections of consecutive identical elements, while keeping a count of
/// how many repeated elements were present.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `(usize, Self::Item)`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec!['a', 'a', 'b', 'c', 'c', 'b', 'b'];
/// itertools::assert_equal(data.into_iter().dedup_with_count(),
/// vec![(2, 'a'), (1, 'b'), (2, 'c'), (2, 'b')]);
/// ```
fn dedup_with_count(self) -> DedupWithCount<Self>
where
Self: Sized,
{
adaptors::dedup_with_count(self)
}
/// Remove duplicates from sections of consecutive identical elements, while keeping a count of
/// how many repeated elements were present.
/// This will determine equality using a comparison function.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `(usize, Self::Item)`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, 'a'), (1, 'a'), (0, 'b'), (0, 'c'), (1, 'c'), (1, 'b'), (2, 'b')];
/// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1),
/// vec![(2, (0, 'a')), (1, (0, 'b')), (2, (0, 'c')), (2, (1, 'b'))]);
/// ```
fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp>
where
Self: Sized,
Cmp: FnMut(&Self::Item, &Self::Item) -> bool,
{
adaptors::dedup_by_with_count(self, cmp)
}
/// Return an iterator adaptor that produces elements that appear more than once during the
/// iteration. Duplicates are detected using hash and equality.
///
/// The iterator is stable, returning the duplicate items in the order in which they occur in
/// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
/// than twice, the second item is the item retained and the rest are discarded.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![10, 20, 30, 20, 40, 10, 50];
/// itertools::assert_equal(data.into_iter().duplicates(),
/// vec![20, 10]);
/// ```
#[cfg(feature = "use_std")]
fn duplicates(self) -> Duplicates<Self>
where Self: Sized,
Self::Item: Eq + Hash
{
duplicates_impl::duplicates(self)
}
/// Return an iterator adaptor that produces elements that appear more than once during the
/// iteration. Duplicates are detected using hash and equality.
///
/// Duplicates are detected by comparing the key they map to with the keying function `f` by
/// hash and equality. The keys are stored in a hash map in the iterator.
///
/// The iterator is stable, returning the duplicate items in the order in which they occur in
/// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
/// than twice, the second item is the item retained and the rest are discarded.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec!["a", "bb", "aa", "c", "ccc"];
/// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()),
/// vec!["aa", "c"]);
/// ```
#[cfg(feature = "use_std")]
fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F>
where Self: Sized,
V: Eq + Hash,
F: FnMut(&Self::Item) -> V
{
duplicates_impl::duplicates_by(self, f)
}
/// Return an iterator adaptor that filters out elements that have
/// already been produced once during the iteration. Duplicates
/// are detected using hash and equality.
///
/// Clones of visited elements are stored in a hash set in the
/// iterator.
///
/// The iterator is stable, returning the non-duplicate items in the order
/// in which they occur in the adapted iterator. In a set of duplicate
/// items, the first item encountered is the item retained.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![10, 20, 30, 20, 40, 10, 50];
/// itertools::assert_equal(data.into_iter().unique(),
/// vec![10, 20, 30, 40, 50]);
/// ```
#[cfg(feature = "use_std")]
fn unique(self) -> Unique<Self>
where Self: Sized,
Self::Item: Clone + Eq + Hash
{
unique_impl::unique(self)
}
/// Return an iterator adaptor that filters out elements that have
/// already been produced once during the iteration.
///
/// Duplicates are detected by comparing the key they map to
/// with the keying function `f` by hash and equality.
/// The keys are stored in a hash set in the iterator.
///
/// The iterator is stable, returning the non-duplicate items in the order
/// in which they occur in the adapted iterator. In a set of duplicate
/// items, the first item encountered is the item retained.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec!["a", "bb", "aa", "c", "ccc"];
/// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
/// vec!["a", "bb", "ccc"]);
/// ```
#[cfg(feature = "use_std")]
fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
where Self: Sized,
V: Eq + Hash,
F: FnMut(&Self::Item) -> V
{
unique_impl::unique_by(self, f)
}
/// Return an iterator adaptor that borrows from this iterator and
/// takes items while the closure `accept` returns `true`.
///
/// This adaptor can only be used on iterators that implement `PeekingNext`
/// like `.peekable()`, `put_back` and a few other collection iterators.
///
/// The last and rejected element (first `false`) is still available when
/// `peeking_take_while` is done.
///
///
/// See also [`.take_while_ref()`](Itertools::take_while_ref)
/// which is a similar adaptor.
fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
where Self: Sized + PeekingNext,
F: FnMut(&Self::Item) -> bool,
{
peeking_take_while::peeking_take_while(self, accept)
}
/// Return an iterator adaptor that borrows from a `Clone`-able iterator
/// to only pick off elements while the predicate `accept` returns `true`.
///
/// It uses the `Clone` trait to restore the original iterator so that the
/// last and rejected element (first `false`) is still available when
/// `take_while_ref` is done.
///
/// ```
/// use itertools::Itertools;
///
/// let mut hexadecimals = "0123456789abcdef".chars();
///
/// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
/// .collect::<String>();
/// assert_eq!(decimals, "0123456789");
/// assert_eq!(hexadecimals.next(), Some('a'));
///
/// ```
fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
where Self: Clone,
F: FnMut(&Self::Item) -> bool
{
adaptors::take_while_ref(self, accept)
}
/// Return an iterator adaptor that filters `Option<A>` iterator elements
/// and produces `A`. Stops on the first `None` encountered.
///
/// Iterator element type is `A`, the unwrapped element.
///
/// ```
/// use itertools::Itertools;
///
/// // List all hexadecimal digits
/// itertools::assert_equal(
/// (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
/// "0123456789abcdef".chars());
///
/// ```
fn while_some<A>(self) -> WhileSome<Self>
where Self: Sized + Iterator<Item = Option<A>>
{
adaptors::while_some(self)
}
/// Return an iterator adaptor that iterates over the combinations of the
/// elements from an iterator.
///
/// Iterator element can be any homogeneous tuple of type `Self::Item` with
/// size up to 12.
///
/// ```
/// use itertools::Itertools;
///
/// let mut v = Vec::new();
/// for (a, b) in (1..5).tuple_combinations() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
///
/// let mut it = (1..5).tuple_combinations();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((1, 2, 4)), it.next());
/// assert_eq!(Some((1, 3, 4)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).tuple_combinations::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
///
/// // you can also specify the complete type
/// use itertools::TupleCombinations;
/// use std::ops::Range;
///
/// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations();
/// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
/// ```
fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
where Self: Sized + Clone,
Self::Item: Clone,
T: adaptors::HasCombination<Self>,
{
adaptors::tuple_combinations(self)
}
/// Return an iterator adaptor that iterates over the `k`-length combinations of
/// the elements from an iterator.
///
/// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
/// and clones the iterator elements.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..5).combinations(3);
/// itertools::assert_equal(it, vec![
/// vec![1, 2, 3],
/// vec![1, 2, 4],
/// vec![1, 3, 4],
/// vec![2, 3, 4],
/// ]);
/// ```
///
/// Note: Combinations does not take into account the equality of the iterated values.
/// ```
/// use itertools::Itertools;
///
/// let it = vec![1, 2, 2].into_iter().combinations(2);
/// itertools::assert_equal(it, vec![
/// vec![1, 2], // Note: these are the same
/// vec![1, 2], // Note: these are the same
/// vec![2, 2],
/// ]);
/// ```
#[cfg(feature = "use_alloc")]
fn combinations(self, k: usize) -> Combinations<Self>
where Self: Sized,
Self::Item: Clone
{
combinations::combinations(self, k)
}
/// Return an iterator that iterates over the `k`-length combinations of
/// the elements from an iterator, with replacement.
///
/// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
/// and clones the iterator elements.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..4).combinations_with_replacement(2);
/// itertools::assert_equal(it, vec![
/// vec![1, 1],
/// vec![1, 2],
/// vec![1, 3],
/// vec![2, 2],
/// vec![2, 3],
/// vec![3, 3],
/// ]);
/// ```
#[cfg(feature = "use_alloc")]
fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self>
where
Self: Sized,
Self::Item: Clone,
{
combinations_with_replacement::combinations_with_replacement(self, k)
}
/// Return an iterator adaptor that iterates over all k-permutations of the
/// elements from an iterator.
///
/// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator
/// produces a new Vec per iteration, and clones the iterator elements.
///
/// If `k` is greater than the length of the input iterator, the resultant
/// iterator adaptor will be empty.
///
/// ```
/// use itertools::Itertools;
///
/// let perms = (5..8).permutations(2);
/// itertools::assert_equal(perms, vec![
/// vec![5, 6],
/// vec![5, 7],
/// vec![6, 5],
/// vec![6, 7],
/// vec![7, 5],
/// vec![7, 6],
/// ]);
/// ```
///
/// Note: Permutations does not take into account the equality of the iterated values.
///
/// ```
/// use itertools::Itertools;
///
/// let it = vec![2, 2].into_iter().permutations(2);
/// itertools::assert_equal(it, vec![
/// vec![2, 2], // Note: these are the same
/// vec![2, 2], // Note: these are the same
/// ]);
/// ```
///
/// Note: The source iterator is collected lazily, and will not be
/// re-iterated if the permutations adaptor is completed and re-iterated.
#[cfg(feature = "use_alloc")]
fn permutations(self, k: usize) -> Permutations<Self>
where Self: Sized,
Self::Item: Clone
{
permutations::permutations(self, k)
}
/// Return an iterator that iterates through the powerset of the elements from an
/// iterator.
///
/// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec`
/// per iteration, and clones the iterator elements.
///
/// The powerset of a set contains all subsets including the empty set and the full
/// input set. A powerset has length _2^n_ where _n_ is the length of the input
/// set.
///
/// Each `Vec` produced by this iterator represents a subset of the elements
/// produced by the source iterator.
///
/// ```
/// use itertools::Itertools;
///
/// let sets = (1..4).powerset().collect::<Vec<_>>();
/// itertools::assert_equal(sets, vec![
/// vec![],
/// vec![1],
/// vec![2],
/// vec![3],
/// vec![1, 2],
/// vec![1, 3],
/// vec![2, 3],
/// vec![1, 2, 3],
/// ]);
/// ```
#[cfg(feature = "use_alloc")]
fn powerset(self) -> Powerset<Self>
where Self: Sized,
Self::Item: Clone,
{
powerset::powerset(self)
}
/// Return an iterator adaptor that pads the sequence to a minimum length of
/// `min` by filling missing elements using a closure `f`.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..5).pad_using(10, |i| 2*i);
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
///
/// let it = (0..10).pad_using(5, |i| 2*i);
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
///
/// let it = (0..5).pad_using(10, |i| 2*i).rev();
/// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
/// ```
fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
where Self: Sized,
F: FnMut(usize) -> Self::Item
{
pad_tail::pad_using(self, min, f)
}
/// Return an iterator adaptor that wraps each element in a `Position` to
/// ease special-case handling of the first or last elements.
///
/// Iterator element type is
/// [`Position<Self::Item>`](Position)
///
/// ```
/// use itertools::{Itertools, Position};
///
/// let it = (0..4).with_position();
/// itertools::assert_equal(it,
/// vec![Position::First(0),
/// Position::Middle(1),
/// Position::Middle(2),
/// Position::Last(3)]);
///
/// let it = (0..1).with_position();
/// itertools::assert_equal(it, vec![Position::Only(0)]);
/// ```
fn with_position(self) -> WithPosition<Self>
where Self: Sized,
{
with_position::with_position(self)
}
/// Return an iterator adaptor that yields the indices of all elements
/// satisfying a predicate, counted from the start of the iterator.
///
/// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
/// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
///
/// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
/// ```
fn positions<P>(self, predicate: P) -> Positions<Self, P>
where Self: Sized,
P: FnMut(Self::Item) -> bool,
{
adaptors::positions(self, predicate)
}
/// Return an iterator adaptor that applies a mutating function
/// to each element before yielding it.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![vec![1], vec![3, 2, 1]];
/// let it = input.into_iter().update(|mut v| v.push(0));
/// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
/// ```
fn update<F>(self, updater: F) -> Update<Self, F>
where Self: Sized,
F: FnMut(&mut Self::Item),
{
adaptors::update(self, updater)
}
// non-adaptor methods
/// Advances the iterator and returns the next items grouped in a tuple of
/// a specific size (up to 12).
///
/// If there are enough elements to be grouped in a tuple, then the tuple is
/// returned inside `Some`, otherwise `None` is returned.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = 1..5;
///
/// assert_eq!(Some((1, 2)), iter.next_tuple());
/// ```
fn next_tuple<T>(&mut self) -> Option<T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple
{
T::collect_from_iter_no_buf(self)
}
/// Collects all items from the iterator into a tuple of a specific size
/// (up to 12).
///
/// If the number of elements inside the iterator is **exactly** equal to
/// the tuple size, then the tuple is returned inside `Some`, otherwise
/// `None` is returned.
///
/// ```
/// use itertools::Itertools;
///
/// let iter = 1..3;
///
/// if let Some((x, y)) = iter.collect_tuple() {
/// assert_eq!((x, y), (1, 2))
/// } else {
/// panic!("Expected two elements")
/// }
/// ```
fn collect_tuple<T>(mut self) -> Option<T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple
{
match self.next_tuple() {
elt @ Some(_) => match self.next() {
Some(_) => None,
None => elt,
},
_ => None
}
}
/// Find the position and value of the first element satisfying a predicate.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let text = "Hα";
/// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
/// ```
fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)>
where P: FnMut(&Self::Item) -> bool
{
for (index, elt) in self.enumerate() {
if pred(&elt) {
return Some((index, elt));
}
}
None
}
/// Find the value of the first element satisfying a predicate or return the last element, if any.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let numbers = [1, 2, 3, 4];
/// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4));
/// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3));
/// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None);
/// ```
fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item>
where Self: Sized,
P: FnMut(&Self::Item) -> bool,
{
let mut prev = None;
self.find_map(|x| if predicate(&x) { Some(x) } else { prev = Some(x); None })
.or(prev)
}
/// Find the value of the first element satisfying a predicate or return the first element, if any.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let numbers = [1, 2, 3, 4];
/// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1));
/// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3));
/// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None);
/// ```
fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item>
where Self: Sized,
P: FnMut(&Self::Item) -> bool,
{
let first = self.next()?;
Some(if predicate(&first) {
first
} else {
self.find(|x| predicate(x)).unwrap_or(first)
})
}
/// Returns `true` if the given item is present in this iterator.
///
/// This method is short-circuiting. If the given item is present in this
/// iterator, this method will consume the iterator up-to-and-including
/// the item. If the given item is not present in this iterator, the
/// iterator will be exhausted.
///
/// ```
/// use itertools::Itertools;
///
/// #[derive(PartialEq, Debug)]
/// enum Enum { A, B, C, D, E, }
///
/// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter();
///
/// // search `iter` for `B`
/// assert_eq!(iter.contains(&Enum::B), true);
/// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`).
/// assert_eq!(iter.next(), Some(Enum::C));
///
/// // search `iter` for `E`
/// assert_eq!(iter.contains(&Enum::E), false);
/// // `E` wasn't found, so `iter` is now exhausted
/// assert_eq!(iter.next(), None);
/// ```
fn contains<Q>(&mut self, query: &Q) -> bool
where
Self: Sized,
Self::Item: Borrow<Q>,
Q: PartialEq,
{
self.any(|x| x.borrow() == query)
}
/// Check whether all elements compare equal.
///
/// Empty iterators are considered to have equal elements:
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
/// assert!(!data.iter().all_equal());
/// assert!(data[0..3].iter().all_equal());
/// assert!(data[3..5].iter().all_equal());
/// assert!(data[5..8].iter().all_equal());
///
/// let data : Option<usize> = None;
/// assert!(data.into_iter().all_equal());
/// ```
fn all_equal(&mut self) -> bool
where Self: Sized,
Self::Item: PartialEq,
{
match self.next() {
None => true,
Some(a) => self.all(|x| a == x),
}
}
/// Check whether all elements are unique (non equal).
///
/// Empty iterators are considered to have unique elements:
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 2, 3, 4, 1, 5];
/// assert!(!data.iter().all_unique());
/// assert!(data[0..4].iter().all_unique());
/// assert!(data[1..6].iter().all_unique());
///
/// let data : Option<usize> = None;
/// assert!(data.into_iter().all_unique());
/// ```
#[cfg(feature = "use_std")]
fn all_unique(&mut self) -> bool
where Self: Sized,
Self::Item: Eq + Hash
{
let mut used = HashSet::new();
self.all(move |elt| used.insert(elt))
}
/// Consume the first `n` elements from the iterator eagerly,
/// and return the same iterator again.
///
/// It works similarly to *.skip(* `n` *)* except it is eager and
/// preserves the iterator type.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = "αβγ".chars().dropping(2);
/// itertools::assert_equal(iter, "γ".chars());
/// ```
///
/// *Fusing notes: if the iterator is exhausted by dropping,
/// the result of calling `.next()` again depends on the iterator implementation.*
fn dropping(mut self, n: usize) -> Self
where Self: Sized
{
if n > 0 {
self.nth(n - 1);
}
self
}
/// Consume the last `n` elements from the iterator eagerly,
/// and return the same iterator again.
///
/// This is only possible on double ended iterators. `n` may be
/// larger than the number of elements.
///
/// Note: This method is eager, dropping the back elements immediately and
/// preserves the iterator type.
///
/// ```
/// use itertools::Itertools;
///
/// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
/// itertools::assert_equal(init, vec![0, 3, 6]);
/// ```
fn dropping_back(mut self, n: usize) -> Self
where Self: Sized,
Self: DoubleEndedIterator
{
if n > 0 {
(&mut self).rev().nth(n - 1);
}
self
}
/// Run the closure `f` eagerly on each element of the iterator.
///
/// Consumes the iterator until its end.
///
/// ```
/// use std::sync::mpsc::channel;
/// use itertools::Itertools;
///
/// let (tx, rx) = channel();
///
/// // use .foreach() to apply a function to each value -- sending it
/// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
///
/// drop(tx);
///
/// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
/// ```
#[deprecated(note="Use .for_each() instead", since="0.8.0")]
fn foreach<F>(self, f: F)
where F: FnMut(Self::Item),
Self: Sized,
{
self.for_each(f);
}
/// Combine all an iterator's elements into one element by using [`Extend`].
///
/// This combinator will extend the first item with each of the rest of the
/// items of the iterator. If the iterator is empty, the default value of
/// `I::Item` is returned.
///
/// ```rust
/// use itertools::Itertools;
///
/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
/// assert_eq!(input.into_iter().concat(),
/// vec![1, 2, 3, 4, 5, 6]);
/// ```
fn concat(self) -> Self::Item
where Self: Sized,
Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default
{
concat(self)
}
/// `.collect_vec()` is simply a type specialization of [`Iterator::collect`],
/// for convenience.
#[cfg(feature = "use_alloc")]
fn collect_vec(self) -> Vec<Self::Item>
where Self: Sized
{
self.collect()
}
/// `.try_collect()` is more convenient way of writing
/// `.collect::<Result<_, _>>()`
///
/// # Example
///
/// ```
/// use std::{fs, io};
/// use itertools::Itertools;
///
/// fn process_dir_entries(entries: &[fs::DirEntry]) {
/// // ...
/// }
///
/// fn do_stuff() -> std::io::Result<()> {
/// let entries: Vec<_> = fs::read_dir(".")?.try_collect()?;
/// process_dir_entries(&entries);
///
/// Ok(())
/// }
/// ```
#[cfg(feature = "use_alloc")]
fn try_collect<T, U, E>(self) -> Result<U, E>
where
Self: Sized + Iterator<Item = Result<T, E>>,
Result<U, E>: FromIterator<Result<T, E>>,
{
self.collect()
}
/// Assign to each reference in `self` from the `from` iterator,
/// stopping at the shortest of the two iterators.
///
/// The `from` iterator is queried for its next element before the `self`
/// iterator, and if either is exhausted the method is done.
///
/// Return the number of elements written.
///
/// ```
/// use itertools::Itertools;
///
/// let mut xs = [0; 4];
/// xs.iter_mut().set_from(1..);
/// assert_eq!(xs, [1, 2, 3, 4]);
/// ```
#[inline]
fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
where Self: Iterator<Item = &'a mut A>,
J: IntoIterator<Item = A>
{
let mut count = 0;
for elt in from {
match self.next() {
None => break,
Some(ptr) => *ptr = elt,
}
count += 1;
}
count
}
/// Combine all iterator elements into one String, separated by `sep`.
///
/// Use the `Display` implementation of each element.
///
/// ```
/// use itertools::Itertools;
///
/// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
/// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
/// ```
#[cfg(feature = "use_alloc")]
fn join(&mut self, sep: &str) -> String
where Self::Item: std::fmt::Display
{
match self.next() {
None => String::new(),
Some(first_elt) => {
// estimate lower bound of capacity needed
let (lower, _) = self.size_hint();
let mut result = String::with_capacity(sep.len() * lower);
write!(&mut result, "{}", first_elt).unwrap();
self.for_each(|elt| {
result.push_str(sep);
write!(&mut result, "{}", elt).unwrap();
});
result
}
}
}
/// Format all iterator elements, separated by `sep`.
///
/// All elements are formatted (any formatting trait)
/// with `sep` inserted between each element.
///
/// **Panics** if the formatter helper is formatted more than once.
///
/// ```
/// use itertools::Itertools;
///
/// let data = [1.1, 2.71828, -3.];
/// assert_eq!(
/// format!("{:.2}", data.iter().format(", ")),
/// "1.10, 2.72, -3.00");
/// ```
fn format(self, sep: &str) -> Format<Self>
where Self: Sized,
{
format::new_format_default(self, sep)
}
/// Format all iterator elements, separated by `sep`.
///
/// This is a customizable version of [`.format()`](Itertools::format).
///
/// The supplied closure `format` is called once per iterator element,
/// with two arguments: the element and a callback that takes a
/// `&Display` value, i.e. any reference to type that implements `Display`.
///
/// Using `&format_args!(...)` is the most versatile way to apply custom
/// element formatting. The callback can be called multiple times if needed.
///
/// **Panics** if the formatter helper is formatted more than once.
///
/// ```
/// use itertools::Itertools;
///
/// let data = [1.1, 2.71828, -3.];
/// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt)));
/// assert_eq!(format!("{}", data_formatter),
/// "1.10, 2.72, -3.00");
///
/// // .format_with() is recursively composable
/// let matrix = [[1., 2., 3.],
/// [4., 5., 6.]];
/// let matrix_formatter = matrix.iter().format_with("\n", |row, f| {
/// f(&row.iter().format_with(", ", |elt, g| g(&elt)))
/// });
/// assert_eq!(format!("{}", matrix_formatter),
/// "1, 2, 3\n4, 5, 6");
///
///
/// ```
fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
where Self: Sized,
F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
{
format::new_format(self, sep, format)
}
/// See [`.fold_ok()`](Itertools::fold_ok).
#[deprecated(note="Use .fold_ok() instead", since="0.10.0")]
fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E>
where Self: Iterator<Item = Result<A, E>>,
F: FnMut(B, A) -> B
{
self.fold_ok(start, f)
}
/// Fold `Result` values from an iterator.
///
/// Only `Ok` values are folded. If no error is encountered, the folded
/// value is returned inside `Ok`. Otherwise, the operation terminates
/// and returns the first `Err` value it encounters. No iterator elements are
/// consumed after the first error.
///
/// The first accumulator value is the `start` parameter.
/// Each iteration passes the accumulator value and the next value inside `Ok`
/// to the fold function `f` and its return value becomes the new accumulator value.
///
/// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
/// computation like this:
///
/// ```ignore
/// let mut accum = start;
/// accum = f(accum, 1);
/// accum = f(accum, 2);
/// accum = f(accum, 3);
/// ```
///
/// With a `start` value of 0 and an addition as folding function,
/// this effectively results in *((0 + 1) + 2) + 3*
///
/// ```
/// use std::ops::Add;
/// use itertools::Itertools;
///
/// let values = [1, 2, -2, -1, 2, 1];
/// assert_eq!(
/// values.iter()
/// .map(Ok::<_, ()>)
/// .fold_ok(0, Add::add),
/// Ok(3)
/// );
/// assert!(
/// values.iter()
/// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
/// .fold_ok(0, Add::add)
/// .is_err()
/// );
/// ```
fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E>
where Self: Iterator<Item = Result<A, E>>,
F: FnMut(B, A) -> B
{
for elt in self {
match elt {
Ok(v) => start = f(start, v),
Err(u) => return Err(u),
}
}
Ok(start)
}
/// Fold `Option` values from an iterator.
///
/// Only `Some` values are folded. If no `None` is encountered, the folded
/// value is returned inside `Some`. Otherwise, the operation terminates
/// and returns `None`. No iterator elements are consumed after the `None`.
///
/// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok).
///
/// ```
/// use std::ops::Add;
/// use itertools::Itertools;
///
/// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
/// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
///
/// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
/// assert!(more_values.fold_options(0, Add::add).is_none());
/// assert_eq!(more_values.next().unwrap(), Some(0));
/// ```
fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B>
where Self: Iterator<Item = Option<A>>,
F: FnMut(B, A) -> B
{
for elt in self {
match elt {
Some(v) => start = f(start, v),
None => return None,
}
}
Some(start)
}
/// Accumulator of the elements in the iterator.
///
/// Like `.fold()`, without a base case. If the iterator is
/// empty, return `None`. With just one element, return it.
/// Otherwise elements are accumulated in sequence using the closure `f`.
///
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
/// assert_eq!((0..0).fold1(|x, y| x * y), None);
/// ```
#[deprecated(since = "0.10.2", note = "Use `Iterator::reduce` instead")]
fn fold1<F>(mut self, f: F) -> Option<Self::Item>
where F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
{
self.next().map(move |x| self.fold(x, f))
}
/// Accumulate the elements in the iterator in a tree-like manner.
///
/// You can think of it as, while there's more than one item, repeatedly
/// combining adjacent items. It does so in bottom-up-merge-sort order,
/// however, so that it needs only logarithmic stack space.
///
/// This produces a call tree like the following (where the calls under
/// an item are done after reading that item):
///
/// ```text
/// 1 2 3 4 5 6 7
/// │ │ │ │ │ │ │
/// └─f └─f └─f │
/// │ │ │ │
/// └───f └─f
/// │ │
/// └─────f
/// ```
///
/// Which, for non-associative functions, will typically produce a different
/// result than the linear call tree used by [`Iterator::reduce`]:
///
/// ```text
/// 1 2 3 4 5 6 7
/// │ │ │ │ │ │ │
/// └─f─f─f─f─f─f
/// ```
///
/// If `f` is associative, prefer the normal [`Iterator::reduce`] instead.
///
/// ```
/// use itertools::Itertools;
///
/// // The same tree as above
/// let num_strings = (1..8).map(|x| x.to_string());
/// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)),
/// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))")));
///
/// // Like fold1, an empty iterator produces None
/// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
///
/// // tree_fold1 matches fold1 for associative operations...
/// assert_eq!((0..10).tree_fold1(|x, y| x + y),
/// (0..10).fold1(|x, y| x + y));
/// // ...but not for non-associative ones
/// assert_ne!((0..10).tree_fold1(|x, y| x - y),
/// (0..10).fold1(|x, y| x - y));
/// ```
fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item>
where F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
{
type State<T> = Result<T, Option<T>>;
fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T>
where
II: Iterator<Item = T>,
FF: FnMut(T, T) -> T
{
// This function could be replaced with `it.next().ok_or(None)`,
// but half the useful tree_fold1 work is combining adjacent items,
// so put that in a form that LLVM is more likely to optimize well.
let a =
if let Some(v) = it.next() { v }
else { return Err(None) };
let b =
if let Some(v) = it.next() { v }
else { return Err(Some(a)) };
Ok(f(a, b))
}
fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T>
where
II: Iterator<Item = T>,
FF: FnMut(T, T) -> T
{
let mut x = inner0(it, f)?;
for height in 0..stop {
// Try to get another tree the same size with which to combine it,
// creating a new tree that's twice as big for next time around.
let next =
if height == 0 {
inner0(it, f)
} else {
inner(height, it, f)
};
match next {
Ok(y) => x = f(x, y),
// If we ran out of items, combine whatever we did manage
// to get. It's better combined with the current value
// than something in a parent frame, because the tree in
// the parent is always as least as big as this one.
Err(None) => return Err(Some(x)),
Err(Some(y)) => return Err(Some(f(x, y))),
}
}
Ok(x)
}
match inner(usize::max_value(), &mut self, &mut f) {
Err(x) => x,
_ => unreachable!(),
}
}
/// An iterator method that applies a function, producing a single, final value.
///
/// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for
/// early exit via short-circuiting.
///
/// ```
/// use itertools::Itertools;
/// use itertools::FoldWhile::{Continue, Done};
///
/// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
///
/// let mut result = 0;
///
/// // for loop:
/// for i in &numbers {
/// if *i > 5 {
/// break;
/// }
/// result = result + i;
/// }
///
/// // fold:
/// let result2 = numbers.iter().fold(0, |acc, x| {
/// if *x > 5 { acc } else { acc + x }
/// });
///
/// // fold_while:
/// let result3 = numbers.iter().fold_while(0, |acc, x| {
/// if *x > 5 { Done(acc) } else { Continue(acc + x) }
/// }).into_inner();
///
/// // they're the same
/// assert_eq!(result, result2);
/// assert_eq!(result2, result3);
/// ```
///
/// The big difference between the computations of `result2` and `result3` is that while
/// `fold()` called the provided closure for every item of the callee iterator,
/// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B>
where Self: Sized,
F: FnMut(B, Self::Item) -> FoldWhile<B>
{
use Result::{
Ok as Continue,
Err as Break,
};
let result = self.try_fold(init, #[inline(always)] |acc, v|
match f(acc, v) {
FoldWhile::Continue(acc) => Continue(acc),
FoldWhile::Done(acc) => Break(acc),
}
);
match result {
Continue(acc) => FoldWhile::Continue(acc),
Break(acc) => FoldWhile::Done(acc),
}
}
/// Iterate over the entire iterator and add all the elements.
///
/// An empty iterator returns `None`, otherwise `Some(sum)`.
///
/// # Panics
///
/// When calling `sum1()` and a primitive integer type is being returned, this
/// method will panic if the computation overflows and debug assertions are
/// enabled.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let empty_sum = (1..1).sum1::<i32>();
/// assert_eq!(empty_sum, None);
///
/// let nonempty_sum = (1..11).sum1::<i32>();
/// assert_eq!(nonempty_sum, Some(55));
/// ```
fn sum1<S>(mut self) -> Option<S>
where Self: Sized,
S: std::iter::Sum<Self::Item>,
{
self.next()
.map(|first| once(first).chain(self).sum())
}
/// Iterate over the entire iterator and multiply all the elements.
///
/// An empty iterator returns `None`, otherwise `Some(product)`.
///
/// # Panics
///
/// When calling `product1()` and a primitive integer type is being returned,
/// method will panic if the computation overflows and debug assertions are
/// enabled.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// let empty_product = (1..1).product1::<i32>();
/// assert_eq!(empty_product, None);
///
/// let nonempty_product = (1..11).product1::<i32>();
/// assert_eq!(nonempty_product, Some(3628800));
/// ```
fn product1<P>(mut self) -> Option<P>
where Self: Sized,
P: std::iter::Product<Self::Item>,
{
self.next()
.map(|first| once(first).chain(self).product())
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort the letters of the text in ascending order
/// let text = "bdacfe";
/// itertools::assert_equal(text.chars().sorted_unstable(),
/// "abcdef".chars());
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_unstable(self) -> VecIntoIter<Self::Item>
where Self: Sized,
Self::Item: Ord
{
// Use .sort_unstable() directly since it is not quite identical with
// .sort_by(Ord::cmp)
let mut v = Vec::from_iter(self);
v.sort_unstable();
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable_by`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1))
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec!["Jill", "Jack", "Jane", "John"]);
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
where Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{
let mut v = Vec::from_iter(self);
v.sort_unstable_by(cmp);
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable_by_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_unstable_by_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec!["Jill", "Jack", "Jane", "John"]);
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
where Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K,
{
let mut v = Vec::from_iter(self);
v.sort_unstable_by_key(f);
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort the letters of the text in ascending order
/// let text = "bdacfe";
/// itertools::assert_equal(text.chars().sorted(),
/// "abcdef".chars());
/// ```
#[cfg(feature = "use_alloc")]
fn sorted(self) -> VecIntoIter<Self::Item>
where Self: Sized,
Self::Item: Ord
{
// Use .sort() directly since it is not quite identical with
// .sort_by(Ord::cmp)
let mut v = Vec::from_iter(self);
v.sort();
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1))
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec!["Jill", "Jack", "Jane", "John"]);
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
where Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{
let mut v = Vec::from_iter(self);
v.sort_by(cmp);
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec!["Jill", "Jack", "Jane", "John"]);
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
where Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K,
{
let mut v = Vec::from_iter(self);
v.sort_by_key(f);
v.into_iter()
}
/// Sort all iterator elements into a new iterator in ascending order. The key function is
/// called exactly once per key.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by_cached_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by_cached_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec!["Jill", "Jack", "Jane", "John"]);
/// ```
#[cfg(feature = "use_alloc")]
fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
where
Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K,
{
let mut v = Vec::from_iter(self);
v.sort_by_cached_key(f);
v.into_iter()
}
/// Sort the k smallest elements into a new iterator, in ascending order.
///
/// **Note:** This consumes the entire iterator, and returns the result
/// as a new iterator that owns its elements. If the input contains
/// less than k elements, the result is equivalent to `self.sorted()`.
///
/// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory
/// and `O(n log k)` time, with `n` the number of elements in the input.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// **Note:** This is functionally-equivalent to `self.sorted().take(k)`
/// but much more efficient.
///
/// ```
/// use itertools::Itertools;
///
/// // A random permutation of 0..15
/// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5];
///
/// let five_smallest = numbers
/// .into_iter()
/// .k_smallest(5);
///
/// itertools::assert_equal(five_smallest, 0..5);
/// ```
#[cfg(feature = "use_alloc")]
fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item>
where Self: Sized,
Self::Item: Ord
{
crate::k_smallest::k_smallest(self, k)
.into_sorted_vec()
.into_iter()
}
/// Collect all iterator elements into one of two
/// partitions. Unlike [`Iterator::partition`], each partition may
/// have a distinct type.
///
/// ```
/// use itertools::{Itertools, Either};
///
/// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
///
/// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
/// .into_iter()
/// .partition_map(|r| {
/// match r {
/// Ok(v) => Either::Left(v),
/// Err(v) => Either::Right(v),
/// }
/// });
///
/// assert_eq!(successes, [1, 2]);
/// assert_eq!(failures, [false, true]);
/// ```
fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B)
where Self: Sized,
F: FnMut(Self::Item) -> Either<L, R>,
A: Default + Extend<L>,
B: Default + Extend<R>,
{
let mut left = A::default();
let mut right = B::default();
self.for_each(|val| match predicate(val) {
Either::Left(v) => left.extend(Some(v)),
Either::Right(v) => right.extend(Some(v)),
});
(left, right)
}
/// Partition a sequence of `Result`s into one list of all the `Ok` elements
/// and another list of all the `Err` elements.
///
/// ```
/// use itertools::Itertools;
///
/// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
///
/// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
/// .into_iter()
/// .partition_result();
///
/// assert_eq!(successes, [1, 2]);
/// assert_eq!(failures, [false, true]);
/// ```
fn partition_result<A, B, T, E>(self) -> (A, B)
where
Self: Iterator<Item = Result<T, E>> + Sized,
A: Default + Extend<T>,
B: Default + Extend<E>,
{
self.partition_map(|r| match r {
Ok(v) => Either::Left(v),
Err(v) => Either::Right(v),
})
}
/// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
/// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
///
/// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
/// let lookup = data.into_iter().into_group_map();
///
/// assert_eq!(lookup[&0], vec![10, 20]);
/// assert_eq!(lookup.get(&1), None);
/// assert_eq!(lookup[&2], vec![12, 42]);
/// assert_eq!(lookup[&3], vec![13, 33]);
/// ```
#[cfg(feature = "use_std")]
fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
where Self: Iterator<Item=(K, V)> + Sized,
K: Hash + Eq,
{
group_map::into_group_map(self)
}
/// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified
/// in the closure.
///
/// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`.
///
/// ```
/// use itertools::Itertools;
/// use std::collections::HashMap;
///
/// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
/// let lookup: HashMap<u32,Vec<(u32, u32)>> =
/// data.clone().into_iter().into_group_map_by(|a| a.0);
///
/// assert_eq!(lookup[&0], vec![(0,10),(0,20)]);
/// assert_eq!(lookup.get(&1), None);
/// assert_eq!(lookup[&2], vec![(2,12), (2,42)]);
/// assert_eq!(lookup[&3], vec![(3,13), (3,33)]);
///
/// assert_eq!(
/// data.into_iter()
/// .into_group_map_by(|x| x.0)
/// .into_iter()
/// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v )))
/// .collect::<HashMap<u32,u32>>()[&0],
/// 30,
/// );
/// ```
#[cfg(feature = "use_std")]
fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
where
Self: Iterator<Item=V> + Sized,
K: Hash + Eq,
F: Fn(&V) -> K,
{
group_map::into_group_map_by(self, f)
}
/// Constructs a `GroupingMap` to be used later with one of the efficient
/// group-and-fold operations it allows to perform.
///
/// The input iterator must yield item in the form of `(K, V)` where the
/// value of type `K` will be used as key to identify the groups and the
/// value of type `V` as value for the folding operation.
///
/// See [`GroupingMap`] for more informations
/// on what operations are available.
#[cfg(feature = "use_std")]
fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
where Self: Iterator<Item=(K, V)> + Sized,
K: Hash + Eq,
{
grouping_map::new(self)
}
/// Constructs a `GroupingMap` to be used later with one of the efficient
/// group-and-fold operations it allows to perform.
///
/// The values from this iterator will be used as values for the folding operation
/// while the keys will be obtained from the values by calling `key_mapper`.
///
/// See [`GroupingMap`] for more informations
/// on what operations are available.
#[cfg(feature = "use_std")]
fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F>
where Self: Iterator<Item=V> + Sized,
K: Hash + Eq,
F: FnMut(&V) -> K
{
grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper))
}
/// Return all minimum elements of an iterator.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().min_set(), Vec::<&i32>::new());
///
/// let a = [1];
/// assert_eq!(a.iter().min_set(), vec![&1]);
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().min_set(), vec![&1]);
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn min_set(self) -> Vec<Self::Item>
where Self: Sized, Self::Item: Ord
{
extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y))
}
/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// # use std::cmp::Ordering;
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
extrema_set::min_set_impl(
self,
|_| (),
|x, y, _, _| compare(x, y)
)
}
/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
{
extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky))
}
/// Return all maximum elements of an iterator.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().max_set(), Vec::<&i32>::new());
///
/// let a = [1];
/// assert_eq!(a.iter().max_set(), vec![&1]);
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().max_set(), vec![&5]);
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn max_set(self) -> Vec<Self::Item>
where Self: Sized, Self::Item: Ord
{
extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y))
}
/// Return all maximum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// # use std::cmp::Ordering;
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
extrema_set::max_set_impl(
self,
|_| (),
|x, y, _, _| compare(x, y)
)
}
/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
#[cfg(feature = "use_std")]
fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
{
extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky))
}
/// Return the minimum and maximum elements in the iterator.
///
/// The return type `MinMaxResult` is an enum of three variants:
///
/// - `NoElements` if the iterator is empty.
/// - `OneElement(x)` if the iterator has exactly one element.
/// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
/// values are equal if and only if there is more than one
/// element in the iterator and all elements are equal.
///
/// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
/// and so is faster than calling `min` and `max` separately which does
/// `2 * n` comparisons.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().minmax(), NoElements);
///
/// let a = [1];
/// assert_eq!(a.iter().minmax(), OneElement(&1));
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().minmax(), MinMax(&1, &5));
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().minmax(), MinMax(&1, &1));
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
fn minmax(self) -> MinMaxResult<Self::Item>
where Self: Sized, Self::Item: PartialOrd
{
minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y)
}
/// Return the minimum and maximum element of an iterator, as determined by
/// the specified function.
///
/// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
///
/// For the minimum, the first minimal element is returned. For the maximum,
/// the last maximal element wins. This matches the behavior of the standard
/// [`Iterator::min`] and [`Iterator::max`] methods.
///
/// The keys can be floats but no particular result is guaranteed
/// if a key is NaN.
fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
{
minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk)
}
/// Return the minimum and maximum element of an iterator, as determined by
/// the specified comparison function.
///
/// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
///
/// For the minimum, the first minimal element is returned. For the maximum,
/// the last maximal element wins. This matches the behavior of the standard
/// [`Iterator::min`] and [`Iterator::max`] methods.
fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
minmax::minmax_impl(
self,
|_| (),
|x, y, _, _| Ordering::Less == compare(x, y)
)
}
/// Return the position of the maximum element in the iterator.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max(), None);
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max(), Some(3));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_max(), Some(1));
/// ```
fn position_max(self) -> Option<usize>
where Self: Sized, Self::Item: Ord
{
self.enumerate()
.max_by(|x, y| Ord::cmp(&x.1, &y.1))
.map(|x| x.0)
}
/// Return the position of the maximum element in the iterator, as
/// determined by the specified function.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3));
/// ```
fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
{
self.enumerate()
.max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
.map(|x| x.0)
}
/// Return the position of the maximum element in the iterator, as
/// determined by the specified comparison function.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1));
/// ```
fn position_max_by<F>(self, mut compare: F) -> Option<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
self.enumerate()
.max_by(|x, y| compare(&x.1, &y.1))
.map(|x| x.0)
}
/// Return the position of the minimum element in the iterator.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min(), None);
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min(), Some(4));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_min(), Some(2));
/// ```
fn position_min(self) -> Option<usize>
where Self: Sized, Self::Item: Ord
{
self.enumerate()
.min_by(|x, y| Ord::cmp(&x.1, &y.1))
.map(|x| x.0)
}
/// Return the position of the minimum element in the iterator, as
/// determined by the specified function.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0));
/// ```
fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
{
self.enumerate()
.min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
.map(|x| x.0)
}
/// Return the position of the minimum element in the iterator, as
/// determined by the specified comparison function.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2));
/// ```
fn position_min_by<F>(self, mut compare: F) -> Option<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
self.enumerate()
.min_by(|x, y| compare(&x.1, &y.1))
.map(|x| x.0)
}
/// Return the positions of the minimum and maximum elements in
/// the iterator.
///
/// The return type [`MinMaxResult`] is an enum of three variants:
///
/// - `NoElements` if the iterator is empty.
/// - `OneElement(xpos)` if the iterator has exactly one element.
/// - `MinMax(xpos, ypos)` is returned otherwise, where the
/// element at `xpos` ≤ the element at `ypos`. While the
/// referenced elements themselves may be equal, `xpos` cannot
/// be equal to `ypos`.
///
/// On an iterator of length `n`, `position_minmax` does `1.5 * n`
/// comparisons, and so is faster than calling `position_min` and
/// `position_max` separately which does `2 * n` comparisons.
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// The elements can be floats but no particular result is
/// guaranteed if an element is NaN.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax(), NoElements);
///
/// let a = [10];
/// assert_eq!(a.iter().position_minmax(), OneElement(0));
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax(), MinMax(4, 3));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax(), MinMax(2, 1));
/// ```
fn position_minmax(self) -> MinMaxResult<usize>
where Self: Sized, Self::Item: PartialOrd
{
use crate::MinMaxResult::{NoElements, OneElement, MinMax};
match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) {
NoElements => NoElements,
OneElement(x) => OneElement(x.0),
MinMax(x, y) => MinMax(x.0, y.0),
}
}
/// Return the postions of the minimum and maximum elements of an
/// iterator, as determined by the specified function.
///
/// The return value is a variant of [`MinMaxResult`] like for
/// [`position_minmax`].
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// The keys can be floats but no particular result is guaranteed
/// if a key is NaN.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements);
///
/// let a = [10_i32];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0));
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3));
/// ```
///
/// [`position_minmax`]: Self::position_minmax
fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize>
where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
{
use crate::MinMaxResult::{NoElements, OneElement, MinMax};
match self.enumerate().minmax_by_key(|e| key(&e.1)) {
NoElements => NoElements,
OneElement(x) => OneElement(x.0),
MinMax(x, y) => MinMax(x.0, y.0),
}
}
/// Return the postions of the minimum and maximum elements of an
/// iterator, as determined by the specified comparison function.
///
/// The return value is a variant of [`MinMaxResult`] like for
/// [`position_minmax`].
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements);
///
/// let a = [10_i32];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0));
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1));
/// ```
///
/// [`position_minmax`]: Self::position_minmax
fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
{
use crate::MinMaxResult::{NoElements, OneElement, MinMax};
match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) {
NoElements => NoElements,
OneElement(x) => OneElement(x.0),
MinMax(x, y) => MinMax(x.0, y.0),
}
}
/// If the iterator yields exactly one element, that element will be returned, otherwise
/// an error will be returned containing an iterator that has the same output as the input
/// iterator.
///
/// This provides an additional layer of validation over just calling `Iterator::next()`.
/// If your assumption that there should only be one element yielded is false this provides
/// the opportunity to detect and handle that, preventing errors at a distance.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2);
/// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4));
/// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5));
/// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0));
/// ```
fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>>
where
Self: Sized,
{
match self.next() {
Some(first) => {
match self.next() {
Some(second) => {
Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
}
None => {
Ok(first)
}
}
}
None => Err(ExactlyOneError::new(None, self)),
}
}
/// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields
/// exactly one element, that element will be returned, otherwise an error will be returned
/// containing an iterator that has the same output as the input iterator.
///
/// This provides an additional layer of validation over just calling `Iterator::next()`.
/// If your assumption that there should be at most one element yielded is false this provides
/// the opportunity to detect and handle that, preventing errors at a distance.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2));
/// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4));
/// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5));
/// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None);
/// ```
fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>>
where
Self: Sized,
{
match self.next() {
Some(first) => {
match self.next() {
Some(second) => {
Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
}
None => {
Ok(Some(first))
}
}
}
None => Ok(None),
}
}
/// An iterator adaptor that allows the user to peek at multiple `.next()`
/// values without advancing the base iterator.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// let mut iter = (0..10).multipeek();
/// assert_eq!(iter.peek(), Some(&0));
/// assert_eq!(iter.peek(), Some(&1));
/// assert_eq!(iter.peek(), Some(&2));
/// assert_eq!(iter.next(), Some(0));
/// assert_eq!(iter.peek(), Some(&1));
/// ```
#[cfg(feature = "use_alloc")]
fn multipeek(self) -> MultiPeek<Self>
where
Self: Sized,
{
multipeek_impl::multipeek(self)
}
/// Collect the items in this iterator and return a `HashMap` which
/// contains each item that appears in the iterator and the number
/// of times it appears.
///
/// # Examples
/// ```
/// # use itertools::Itertools;
/// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts();
/// assert_eq!(counts[&1], 3);
/// assert_eq!(counts[&3], 2);
/// assert_eq!(counts[&5], 1);
/// assert_eq!(counts.get(&0), None);
/// ```
#[cfg(feature = "use_std")]
fn counts(self) -> HashMap<Self::Item, usize>
where
Self: Sized,
Self::Item: Eq + Hash,
{
let mut counts = HashMap::new();
self.for_each(|item| *counts.entry(item).or_default() += 1);
counts
}
/// Collect the items in this iterator and return a `HashMap` which
/// contains each item that appears in the iterator and the number
/// of times it appears,
/// determining identity using a keying function.
///
/// ```
/// # use itertools::Itertools;
/// struct Character {
/// first_name: &'static str,
/// last_name: &'static str,
/// }
///
/// let characters =
/// vec![
/// Character { first_name: "Amy", last_name: "Pond" },
/// Character { first_name: "Amy", last_name: "Wong" },
/// Character { first_name: "Amy", last_name: "Santiago" },
/// Character { first_name: "James", last_name: "Bond" },
/// Character { first_name: "James", last_name: "Sullivan" },
/// Character { first_name: "James", last_name: "Norington" },
/// Character { first_name: "James", last_name: "Kirk" },
/// ];
///
/// let first_name_frequency =
/// characters
/// .into_iter()
/// .counts_by(|c| c.first_name);
///
/// assert_eq!(first_name_frequency["Amy"], 3);
/// assert_eq!(first_name_frequency["James"], 4);
/// assert_eq!(first_name_frequency.contains_key("Asha"), false);
/// ```
#[cfg(feature = "use_std")]
fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
where
Self: Sized,
K: Eq + Hash,
F: FnMut(Self::Item) -> K,
{
self.map(f).counts()
}
/// Converts an iterator of tuples into a tuple of containers.
///
/// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
/// column.
///
/// This function is, in some sense, the opposite of [`multizip`].
///
/// ```
/// use itertools::Itertools;
///
/// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
///
/// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs
/// .into_iter()
/// .multiunzip();
///
/// assert_eq!(a, vec![1, 4, 7]);
/// assert_eq!(b, vec![2, 5, 8]);
/// assert_eq!(c, vec![3, 6, 9]);
/// ```
fn multiunzip<FromI>(self) -> FromI
where
Self: Sized + MultiUnzip<FromI>,
{
MultiUnzip::multiunzip(self)
}
}
impl<T: ?Sized> Itertools for T where T: Iterator { }
/// Return `true` if both iterables produce equal sequences
/// (elements pairwise equal and sequences of the same length),
/// `false` otherwise.
///
/// [`IntoIterator`] enabled version of [`Iterator::eq`].
///
/// ```
/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
/// ```
pub fn equal<I, J>(a: I, b: J) -> bool
where I: IntoIterator,
J: IntoIterator,
I::Item: PartialEq<J::Item>
{
a.into_iter().eq(b)
}
/// Assert that two iterables produce equal sequences, with the same
/// semantics as [`equal(a, b)`](equal).
///
/// **Panics** on assertion failure with a message that shows the
/// two iteration elements.
///
/// ```ignore
/// assert_equal("exceed".split('c'), "excess".split('c'));
/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1',
/// ```
pub fn assert_equal<I, J>(a: I, b: J)
where I: IntoIterator,
J: IntoIterator,
I::Item: fmt::Debug + PartialEq<J::Item>,
J::Item: fmt::Debug,
{
let mut ia = a.into_iter();
let mut ib = b.into_iter();
let mut i = 0;
loop {
match (ia.next(), ib.next()) {
(None, None) => return,
(a, b) => {
let equal = match (&a, &b) {
(&Some(ref a), &Some(ref b)) => a == b,
_ => false,
};
assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}",
i=i, a=a, b=b);
i += 1;
}
}
}
}
/// Partition a sequence using predicate `pred` so that elements
/// that map to `true` are placed before elements which map to `false`.
///
/// The order within the partitions is arbitrary.
///
/// Return the index of the split point.
///
/// ```
/// use itertools::partition;
///
/// # // use repeated numbers to not promise any ordering
/// let mut data = [7, 1, 1, 7, 1, 1, 7];
/// let split_index = partition(&mut data, |elt| *elt >= 3);
///
/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
/// assert_eq!(split_index, 3);
/// ```
pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize
where I: IntoIterator<Item = &'a mut A>,
I::IntoIter: DoubleEndedIterator,
F: FnMut(&A) -> bool
{
let mut split_index = 0;
let mut iter = iter.into_iter();
'main: while let Some(front) = iter.next() {
if !pred(front) {
loop {
match iter.next_back() {
Some(back) => if pred(back) {
std::mem::swap(front, back);
break;
},
None => break 'main,
}
}
}
split_index += 1;
}
split_index
}
/// An enum used for controlling the execution of `fold_while`.
///
/// See [`.fold_while()`](Itertools::fold_while) for more information.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum FoldWhile<T> {
/// Continue folding with this value
Continue(T),
/// Fold is complete and will return this value
Done(T),
}
impl<T> FoldWhile<T> {
/// Return the value in the continue or done.
pub fn into_inner(self) -> T {
match self {
FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
}
}
/// Return true if `self` is `Done`, false if it is `Continue`.
pub fn is_done(&self) -> bool {
match *self {
FoldWhile::Continue(_) => false,
FoldWhile::Done(_) => true,
}
}
}