Files
tubestation/gfx/layers/ipc/ShadowLayers.h
Randall Barker c955f482b1 Bug 1335895 - Android GeckoView Dynamic Toolbar Version 3 r=botond,dvander,jchen,kats
This version of the Dynamic Toolbar moves the animation of the toolbar
from the Android UI thread to the compositor thread. All animation for
showing and hiding the toolbar are done with the compositor and a static
snapshot of the real toolbar.

MozReview-Commit-ID: BCe8zpbkWQt
2017-04-20 15:15:14 -07:00

503 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=8 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_layers_ShadowLayers_h
#define mozilla_layers_ShadowLayers_h 1
#include <stddef.h> // for size_t
#include <stdint.h> // for uint64_t
#include "gfxTypes.h"
#include "mozilla/Attributes.h" // for override
#include "mozilla/gfx/Rect.h"
#include "mozilla/WidgetUtils.h" // for ScreenRotation
#include "mozilla/dom/ScreenOrientation.h" // for ScreenOrientation
#include "mozilla/ipc/SharedMemory.h" // for SharedMemory, etc
#include "mozilla/layers/CompositableForwarder.h"
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/layers/TextureForwarder.h"
#include "mozilla/layers/CompositorTypes.h" // for OpenMode, etc
#include "mozilla/layers/CompositorBridgeChild.h"
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsRegion.h" // for nsIntRegion
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "nsIWidget.h"
#include <vector>
#include "nsExpirationTracker.h"
namespace mozilla {
namespace layers {
class ClientLayerManager;
class CompositorBridgeChild;
class FixedSizeSmallShmemSectionAllocator;
class ImageContainer;
class Layer;
class PLayerTransactionChild;
class LayerTransactionChild;
class ShadowableLayer;
class SurfaceDescriptor;
class TextureClient;
class ThebesBuffer;
class ThebesBufferData;
class Transaction;
/**
* See ActiveResourceTracker below.
*/
class ActiveResource
{
public:
virtual void NotifyInactive() = 0;
nsExpirationState* GetExpirationState() { return &mExpirationState; }
bool IsActivityTracked() { return mExpirationState.IsTracked(); }
private:
nsExpirationState mExpirationState;
};
/**
* A convenience class on top of nsExpirationTracker
*/
class ActiveResourceTracker : public nsExpirationTracker<ActiveResource, 3>
{
public:
ActiveResourceTracker(uint32_t aExpirationCycle, const char* aName,
nsIEventTarget* aEventTarget)
: nsExpirationTracker(aExpirationCycle, aName, aEventTarget)
{}
virtual void NotifyExpired(ActiveResource* aResource) override
{
RemoveObject(aResource);
aResource->NotifyInactive();
}
};
/**
* We want to share layer trees across thread contexts and address
* spaces for several reasons; chief among them
*
* - a parent process can paint a child process's layer tree while
* the child process is blocked, say on content script. This is
* important on mobile devices where UI responsiveness is key.
*
* - a dedicated "compositor" process can asynchronously (wrt the
* browser process) composite and animate layer trees, allowing a
* form of pipeline parallelism between compositor/browser/content
*
* - a dedicated "compositor" process can take all responsibility for
* accessing the GPU, which is desirable on systems with
* buggy/leaky drivers because the compositor process can die while
* browser and content live on (and failover mechanisms can be
* installed to quickly bring up a replacement compositor)
*
* The Layers model has a crisply defined API, which makes it easy to
* safely "share" layer trees. The ShadowLayers API extends Layers to
* allow a remote, parent process to access a child process's layer
* tree.
*
* ShadowLayerForwarder publishes a child context's layer tree to a
* parent context. This comprises recording layer-tree modifications
* into atomic transactions and pushing them over IPC.
*
* LayerManagerComposite grafts layer subtrees published by child-context
* ShadowLayerForwarder(s) into a parent-context layer tree.
*
* (Advanced note: because our process tree may have a height >2, a
* non-leaf subprocess may both receive updates from child processes
* and publish them to parent processes. Put another way,
* LayerManagers may be both LayerManagerComposites and
* ShadowLayerForwarders.)
*
* There are only shadow types for layers that have different shadow
* vs. not-shadow behavior. ColorLayers and ContainerLayers behave
* the same way in both regimes (so far).
*
*
* The mecanism to shadow the layer tree on the compositor through IPC works as
* follows:
* The layer tree is managed on the content thread, and shadowed in the compositor
* thread. The shadow layer tree is only kept in sync with whatever happens in
* the content thread. To do this we use IPDL protocols. IPDL is a domain
* specific language that describes how two processes or thread should
* communicate. C++ code is generated from .ipdl files to implement the message
* passing, synchronization and serialization logic. To use the generated code
* we implement classes that inherit the generated IPDL actor. the ipdl actors
* of a protocol PX are PXChild or PXParent (the generated class), and we
* conventionally implement XChild and XParent. The Parent side of the protocol
* is the one that lives on the compositor thread. Think of IPDL actors as
* endpoints of communication. they are useful to send messages and also to
* dispatch the message to the right actor on the other side. One nice property
* of an IPDL actor is that when an actor, say PXChild is sent in a message, the
* PXParent comes out in the other side. we use this property a lot to dispatch
* messages to the right layers and compositable, each of which have their own
* ipdl actor on both side.
*
* Most of the synchronization logic happens in layer transactions and
* compositable transactions.
* A transaction is a set of changes to the layers and/or the compositables
* that are sent and applied together to the compositor thread to keep the
* LayerComposite in a coherent state.
* Layer transactions maintain the shape of the shadow layer tree, and
* synchronize the texture data held by compositables. Layer transactions
* are always between the content thread and the compositor thread.
* Compositable transactions are subset of a layer transaction with which only
* compositables and textures can be manipulated, and does not always originate
* from the content thread. (See CompositableForwarder.h and ImageBridgeChild.h)
*/
class ShadowLayerForwarder final : public LayersIPCActor
, public CompositableForwarder
, public LegacySurfaceDescriptorAllocator
{
friend class ClientLayerManager;
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ShadowLayerForwarder, override);
/**
* Setup the IPDL actor for aCompositable to be part of layers
* transactions.
*/
void Connect(CompositableClient* aCompositable,
ImageContainer* aImageContainer) override;
/**
* Adds an edit in the layers transaction in order to attach
* the corresponding compositable and layer on the compositor side.
* Connect must have been called on aCompositable beforehand.
*/
void Attach(CompositableClient* aCompositable,
ShadowableLayer* aLayer);
/**
* Adds an edit in the transaction in order to attach a Compositable that
* is not managed by this ShadowLayerForwarder (for example, by ImageBridge
* in the case of async-video).
* Since the compositable is not managed by this forwarder, we can't use
* the compositable or it's IPDL actor here, so we use an ID instead, that
* is matched on the compositor side.
*/
void AttachAsyncCompositable(const CompositableHandle& aHandle,
ShadowableLayer* aLayer);
/**
* Begin recording a transaction to be forwarded atomically to a
* LayerManagerComposite.
*/
void BeginTransaction(const gfx::IntRect& aTargetBounds,
ScreenRotation aRotation,
mozilla::dom::ScreenOrientationInternal aOrientation);
/**
* The following methods may only be called after BeginTransaction()
* but before EndTransaction(). They mirror the LayerManager
* interface in Layers.h.
*/
/**
* Notify the shadow manager that a new, "real" layer has been
* created, and a corresponding shadow layer should be created in
* the compositing process.
*/
void CreatedPaintedLayer(ShadowableLayer* aThebes);
void CreatedContainerLayer(ShadowableLayer* aContainer);
void CreatedImageLayer(ShadowableLayer* aImage);
void CreatedColorLayer(ShadowableLayer* aColor);
void CreatedCanvasLayer(ShadowableLayer* aCanvas);
void CreatedRefLayer(ShadowableLayer* aRef);
void CreatedTextLayer(ShadowableLayer* aRef);
void CreatedBorderLayer(ShadowableLayer* aRef);
/**
* At least one attribute of |aMutant| has changed, and |aMutant|
* needs to sync to its shadow layer. This initial implementation
* forwards all attributes when any of the appropriate attribute
* set is mutated.
*/
void Mutated(ShadowableLayer* aMutant);
void MutatedSimple(ShadowableLayer* aMutant);
void SetRoot(ShadowableLayer* aRoot);
/**
* Insert |aChild| after |aAfter| in |aContainer|. |aAfter| can be
* nullptr to indicated that |aChild| should be appended to the end of
* |aContainer|'s child list.
*/
void InsertAfter(ShadowableLayer* aContainer,
ShadowableLayer* aChild,
ShadowableLayer* aAfter = nullptr);
void RemoveChild(ShadowableLayer* aContainer,
ShadowableLayer* aChild);
void RepositionChild(ShadowableLayer* aContainer,
ShadowableLayer* aChild,
ShadowableLayer* aAfter = nullptr);
/**
* Set aMaskLayer as the mask on aLayer.
* Note that only image layers are properly supported
* LayerTransactionParent::UpdateMask and accompanying ipdl
* will need changing to update properties for other kinds
* of mask layer.
*/
void SetMask(ShadowableLayer* aLayer,
ShadowableLayer* aMaskLayer);
/**
* See CompositableForwarder::UseTiledLayerBuffer
*/
void UseTiledLayerBuffer(CompositableClient* aCompositable,
const SurfaceDescriptorTiles& aTileLayerDescriptor) override;
void ReleaseCompositable(const CompositableHandle& aHandle) override;
bool DestroyInTransaction(PTextureChild* aTexture) override;
bool DestroyInTransaction(const CompositableHandle& aHandle);
virtual void RemoveTextureFromCompositable(CompositableClient* aCompositable,
TextureClient* aTexture) override;
/**
* Communicate to the compositor that aRegion in the texture identified by aLayer
* and aIdentifier has been updated to aThebesBuffer.
*/
virtual void UpdateTextureRegion(CompositableClient* aCompositable,
const ThebesBufferData& aThebesBufferData,
const nsIntRegion& aUpdatedRegion) override;
/**
* See CompositableForwarder::UseTextures
*/
virtual void UseTextures(CompositableClient* aCompositable,
const nsTArray<TimedTextureClient>& aTextures) override;
virtual void UseComponentAlphaTextures(CompositableClient* aCompositable,
TextureClient* aClientOnBlack,
TextureClient* aClientOnWhite) override;
/**
* Used for debugging to tell the compositor how long this frame took to paint.
*/
void SendPaintTime(uint64_t aId, TimeDuration aPaintTime);
/**
* End the current transaction and forward it to LayerManagerComposite.
* |aReplies| are directions from the LayerManagerComposite to the
* caller of EndTransaction().
*/
bool EndTransaction(const nsIntRegion& aRegionToClear,
uint64_t aId,
bool aScheduleComposite,
uint32_t aPaintSequenceNumber,
bool aIsRepeatTransaction,
const mozilla::TimeStamp& aTransactionStart,
bool* aSent);
/**
* Set an actor through which layer updates will be pushed.
*/
void SetShadowManager(PLayerTransactionChild* aShadowManager);
/**
* Layout calls here to cache current plugin widget configuration
* data. We ship this across with the rest of the layer updates when
* we update. Chrome handles applying these changes.
*/
void StorePluginWidgetConfigurations(const nsTArray<nsIWidget::Configuration>&
aConfigurations);
void StopReceiveAsyncParentMessge();
void ClearCachedResources();
void Composite();
/**
* True if this is forwarding to a LayerManagerComposite.
*/
bool HasShadowManager() const { return !!mShadowManager; }
LayerTransactionChild* GetShadowManager() const { return mShadowManager.get(); }
virtual void WindowOverlayChanged() { mWindowOverlayChanged = true; }
/**
* The following Alloc/Open/Destroy interfaces abstract over the
* details of working with surfaces that are shared across
* processes. They provide the glue between C++ Layers and the
* LayerComposite IPC system.
*
* The basic lifecycle is
*
* - a Layer needs a buffer. Its ShadowableLayer subclass calls
* AllocBuffer(), then calls one of the Created*Buffer() methods
* above to transfer the (temporary) front buffer to its
* LayerComposite in the other process. The Layer needs a
* gfxASurface to paint, so the ShadowableLayer uses
* OpenDescriptor(backBuffer) to get that surface, and hands it
* out to the Layer.
*
* - a Layer has painted new pixels. Its ShadowableLayer calls one
* of the Painted*Buffer() methods above with the back buffer
* descriptor. This notification is forwarded to the LayerComposite,
* which uses OpenDescriptor() to access the newly-painted pixels.
* The LayerComposite then updates its front buffer in a Layer- and
* platform-dependent way, and sends a surface descriptor back to
* the ShadowableLayer that becomes its new back back buffer.
*
* - a Layer wants to destroy its buffers. Its ShadowableLayer
* calls Destroyed*Buffer(), which gives up control of the back
* buffer descriptor. The actual back buffer surface is then
* destroyed using DestroySharedSurface() just before notifying
* the parent process. When the parent process is notified, the
* LayerComposite also calls DestroySharedSurface() on its front
* buffer, and the double-buffer pair is gone.
*/
virtual bool IPCOpen() const override;
/**
* Construct a shadow of |aLayer| on the "other side", at the
* LayerManagerComposite.
*/
LayerHandle ConstructShadowFor(ShadowableLayer* aLayer);
/**
* Flag the next paint as the first for a document.
*/
void SetIsFirstPaint() { mIsFirstPaint = true; }
void SetLayerObserverEpoch(uint64_t aLayerObserverEpoch);
static void PlatformSyncBeforeUpdate();
virtual bool AllocSurfaceDescriptor(const gfx::IntSize& aSize,
gfxContentType aContent,
SurfaceDescriptor* aBuffer) override;
virtual bool AllocSurfaceDescriptorWithCaps(const gfx::IntSize& aSize,
gfxContentType aContent,
uint32_t aCaps,
SurfaceDescriptor* aBuffer) override;
virtual void DestroySurfaceDescriptor(SurfaceDescriptor* aSurface) override;
virtual void UpdateFwdTransactionId() override;
virtual uint64_t GetFwdTransactionId() override;
void ReleaseLayer(const LayerHandle& aHandle);
bool InForwarderThread() override {
return NS_IsMainThread();
}
PaintTiming& GetPaintTiming() {
return mPaintTiming;
}
// Returns true if aSurface wraps a Shmem.
static bool IsShmem(SurfaceDescriptor* aSurface);
/**
* Sends a synchronous ping to the compsoitor.
*
* This is bad for performance and should only be called as a last resort if the
* compositor may be blocked for a long period of time, to avoid that the content
* process accumulates resource allocations that the compositor is not consuming
* and releasing.
*/
void SyncWithCompositor();
TextureForwarder* GetTextureForwarder() override { return GetCompositorBridgeChild(); }
LayersIPCActor* GetLayersIPCActor() override { return this; }
ActiveResourceTracker& GetActiveResourceTracker() { return *mActiveResourceTracker.get(); }
protected:
virtual ~ShadowLayerForwarder();
explicit ShadowLayerForwarder(ClientLayerManager* aClientLayerManager);
#ifdef DEBUG
void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const;
#else
void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const {}
#endif
RefPtr<CompositableClient> FindCompositable(const CompositableHandle& aHandle);
bool InWorkerThread();
CompositorBridgeChild* GetCompositorBridgeChild();
RefPtr<LayerTransactionChild> mShadowManager;
RefPtr<CompositorBridgeChild> mCompositorBridgeChild;
private:
ClientLayerManager* mClientLayerManager;
Transaction* mTxn;
MessageLoop* mMessageLoop;
DiagnosticTypes mDiagnosticTypes;
bool mIsFirstPaint;
bool mWindowOverlayChanged;
InfallibleTArray<PluginWindowData> mPluginWindowData;
UniquePtr<ActiveResourceTracker> mActiveResourceTracker;
uint64_t mNextLayerHandle;
nsDataHashtable<nsUint64HashKey, CompositableClient*> mCompositables;
PaintTiming mPaintTiming;
/**
* ShadowLayerForwarder might dispatch tasks to main while puppet widget and
* tabChild don't exist anymore; therefore we hold the event target since its
* lifecycle is independent of these objects.
*/
nsCOMPtr<nsIEventTarget> mEventTarget;
};
class CompositableClient;
/**
* A ShadowableLayer is a Layer can be shared with a parent context
* through a ShadowLayerForwarder. A ShadowableLayer maps to a
* Shadow*Layer in a parent context.
*
* Note that ShadowLayers can themselves be ShadowableLayers.
*/
class ShadowableLayer
{
public:
virtual ~ShadowableLayer();
virtual Layer* AsLayer() = 0;
/**
* True if this layer has a shadow in a parent process.
*/
bool HasShadow() { return mShadow.IsValid(); }
/**
* Return the IPC handle to a Shadow*Layer referring to this if one
* exists, nullptr if not.
*/
const LayerHandle& GetShadow() { return mShadow; }
void SetShadow(ShadowLayerForwarder* aForwarder, const LayerHandle& aShadow) {
MOZ_ASSERT(!mShadow, "can't have two shadows (yet)");
mForwarder = aForwarder;
mShadow = aShadow;
}
virtual CompositableClient* GetCompositableClient() { return nullptr; }
protected:
ShadowableLayer() {}
private:
RefPtr<ShadowLayerForwarder> mForwarder;
LayerHandle mShadow;
};
} // namespace layers
} // namespace mozilla
#endif // ifndef mozilla_layers_ShadowLayers_h