Files
tubestation/dom/base/ContentIterator.cpp
Masayuki Nakano a5637890c7 Bug 1946001 - Fix some points which may cross independent selection boundary r=emilio,jjaschke
This patch fixes multiple points which may cross independent selection
boundaries which is element boundary of the native anonymous `<div>` for
editable content in text controls.  The reason why I don't split this patch is,
fixing one of them leads another assertion failure.  So, I couldn't pass all
tests with separated patches.

1. `nsFrameTraversal` should take `Element` instead of `nsIFrame` for the
limiter because e.g., inline editing host like `<span contenteditable>` may
have multiple frames if it's wrapped.  Therefore, we should make it take
an element as the ancestor limiter, and check it when getting parent frame
or after getting previous or next frame.
2. `nsIFrame::PeekBackwardAndForward` may cross the boundary because it does not
take the anonymous `<div>` element as ancestor limiter of the selection.  It's
currently used only for extending selection.  Therefore, I rename it to make
it clearer.
3. `SelectionMovementUtils::GetPrevNextBidiLevel` to take the ancestor limiter
for calling `nsIFrame::GetFrameFromDirection()`.
4. `nsINode` should have a method to return the `nsFrameSelection` instance
which manages the selection in the node.  This makes the check simpler, and
this is not expensive.  Then, for making it clearer, I rename
`TextControlElement::GetConstFrameSelection()` to
`GetIndependentFrameSelection()`.
5. `nsINode::GetSelectionRootContent()` should have an option to return
independent selection root when the node is its host for
`nsFrameSelection::ConstrainFrameAndPointToAnchorSubtree()`
6. `nsFrameSelection::ConstrainFrameAndPointToAnchorSubtree()` should not
retrieve independent selection root when the given frame is a text control
frame.
7. `RangeUtils` should get parent with checking the independent selection
boundaries.
8. `Selection::Extend` should assert if the destination is managed by its
frame selection to detect a bug.

Differential Revision: https://phabricator.services.mozilla.com/D241587
2025-03-17 12:49:57 +00:00

1296 lines
41 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ContentIterator.h"
#include "mozilla/Assertions.h"
#include "mozilla/dom/ShadowRoot.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/RangeBoundary.h"
#include "mozilla/RangeUtils.h"
#include "mozilla/Result.h"
#include "nsContentUtils.h"
#include "nsElementTable.h"
#include "nsIContent.h"
#include "nsRange.h"
namespace mozilla {
using namespace dom;
#define NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(aResultType, aMethodName, ...) \
template aResultType ContentIteratorBase<RefPtr<nsINode>>::aMethodName( \
__VA_ARGS__); \
template aResultType ContentIteratorBase<nsINode*>::aMethodName(__VA_ARGS__)
static bool ComparePostMode(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd, nsINode& aNode) {
nsINode* parent = aNode.GetParentNode();
if (!parent) {
return false;
}
// aNode should always be content, as we have a parent, but let's just be
// extra careful and check.
nsIContent* content =
NS_WARN_IF(!aNode.IsContent()) ? nullptr : aNode.AsContent();
// Post mode: start < node <= end.
RawRangeBoundary afterNode(parent, content);
const auto isStartLessThanAfterNode = [&]() {
const Maybe<int32_t> startComparedToAfterNode =
nsContentUtils::ComparePoints(aStart, afterNode);
return !NS_WARN_IF(!startComparedToAfterNode) &&
(*startComparedToAfterNode < 0);
};
const auto isAfterNodeLessOrEqualToEnd = [&]() {
const Maybe<int32_t> afterNodeComparedToEnd =
nsContentUtils::ComparePoints(afterNode, aEnd);
return !NS_WARN_IF(!afterNodeComparedToEnd) &&
(*afterNodeComparedToEnd <= 0);
};
return isStartLessThanAfterNode() && isAfterNodeLessOrEqualToEnd();
}
static bool ComparePreMode(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd, nsINode& aNode) {
nsINode* parent = aNode.GetParentNode();
if (!parent) {
return false;
}
// Pre mode: start <= node < end.
RawRangeBoundary beforeNode(parent, aNode.GetPreviousSibling());
const auto isStartLessOrEqualToBeforeNode = [&]() {
const Maybe<int32_t> startComparedToBeforeNode =
nsContentUtils::ComparePoints(aStart, beforeNode);
return !NS_WARN_IF(!startComparedToBeforeNode) &&
(*startComparedToBeforeNode <= 0);
};
const auto isBeforeNodeLessThanEndNode = [&]() {
const Maybe<int32_t> beforeNodeComparedToEnd =
nsContentUtils::ComparePoints(beforeNode, aEnd);
return !NS_WARN_IF(!beforeNodeComparedToEnd) &&
(*beforeNodeComparedToEnd < 0);
};
return isStartLessOrEqualToBeforeNode() && isBeforeNodeLessThanEndNode();
}
///////////////////////////////////////////////////////////////////////////
// NodeIsInTraversalRange: returns true if content is visited during
// the traversal of the range in the specified mode.
//
static bool NodeIsInTraversalRange(nsINode* aNode, bool aIsPreMode,
const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd) {
if (NS_WARN_IF(!aStart.IsSet()) || NS_WARN_IF(!aEnd.IsSet()) ||
NS_WARN_IF(!aNode)) {
return false;
}
// If a leaf node contains an end point of the traversal range, it is
// always in the traversal range.
if (aNode == aStart.GetContainer() || aNode == aEnd.GetContainer()) {
if (aNode->IsCharacterData()) {
return true; // text node or something
}
if (!aNode->HasChildren()) {
MOZ_ASSERT(
aNode != aStart.GetContainer() || aStart.IsStartOfContainer(),
"aStart.GetContainer() doesn't have children and not a data node, "
"aStart should be at the beginning of its container");
MOZ_ASSERT(
aNode != aEnd.GetContainer() || aEnd.IsStartOfContainer(),
"aEnd.GetContainer() doesn't have children and not a data node, "
"aEnd should be at the beginning of its container");
return true;
}
}
if (aIsPreMode) {
return ComparePreMode(aStart, aEnd, *aNode);
}
return ComparePostMode(aStart, aEnd, *aNode);
}
void ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
PostContentIterator& aField, const char* aName,
uint32_t aFlags = 0) {
ImplCycleCollectionTraverse(
aCallback, static_cast<SafeContentIteratorBase&>(aField), aName, aFlags);
}
void ImplCycleCollectionUnlink(PostContentIterator& aField) {
ImplCycleCollectionUnlink(static_cast<SafeContentIteratorBase&>(aField));
}
void ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
PreContentIterator& aField, const char* aName,
uint32_t aFlags = 0) {
ImplCycleCollectionTraverse(
aCallback, static_cast<SafeContentIteratorBase&>(aField), aName, aFlags);
}
void ImplCycleCollectionUnlink(PreContentIterator& aField) {
ImplCycleCollectionUnlink(static_cast<SafeContentIteratorBase&>(aField));
}
void ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
ContentSubtreeIterator& aField,
const char* aName, uint32_t aFlags = 0) {
ImplCycleCollectionTraverse(aCallback, aField.mRange, aName, aFlags);
ImplCycleCollectionTraverse(
aCallback, static_cast<SafeContentIteratorBase&>(aField), aName, aFlags);
}
void ImplCycleCollectionUnlink(ContentSubtreeIterator& aField) {
ImplCycleCollectionUnlink(aField.mRange);
ImplCycleCollectionUnlink(static_cast<SafeContentIteratorBase&>(aField));
}
/******************************************************
* ContentIteratorBase
******************************************************/
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(, ContentIteratorBase, Order);
template <typename NodeType>
ContentIteratorBase<NodeType>::ContentIteratorBase(Order aOrder)
: mOrder(aOrder) {}
template ContentIteratorBase<RefPtr<nsINode>>::~ContentIteratorBase();
template ContentIteratorBase<nsINode*>::~ContentIteratorBase();
template <typename NodeType>
ContentIteratorBase<NodeType>::~ContentIteratorBase() {
MOZ_DIAGNOSTIC_ASSERT_IF(mMutationGuard.isSome(),
!mMutationGuard->Mutated(0));
}
/******************************************************
* Init routines
******************************************************/
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(nsresult, Init, nsINode*);
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::Init(nsINode* aRoot) {
if (NS_WARN_IF(!aRoot)) {
return NS_ERROR_NULL_POINTER;
}
if (mOrder == Order::Pre) {
mFirst = aRoot;
mLast = ContentIteratorBase::GetDeepLastChild(aRoot);
NS_WARNING_ASSERTION(mLast, "GetDeepLastChild returned null");
} else {
mFirst = ContentIteratorBase::GetDeepFirstChild(aRoot);
NS_WARNING_ASSERTION(mFirst, "GetDeepFirstChild returned null");
mLast = aRoot;
}
mClosestCommonInclusiveAncestor = aRoot;
mCurNode = mFirst;
return NS_OK;
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(nsresult, Init, AbstractRange*);
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::Init(AbstractRange* aRange) {
if (NS_WARN_IF(!aRange)) {
return NS_ERROR_INVALID_ARG;
}
if (NS_WARN_IF(!aRange->IsPositioned())) {
return NS_ERROR_INVALID_ARG;
}
return InitInternal(aRange->StartRef().AsRaw(), aRange->EndRef().AsRaw());
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(nsresult, Init, nsINode*, uint32_t,
nsINode*, uint32_t);
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::Init(nsINode* aStartContainer,
uint32_t aStartOffset,
nsINode* aEndContainer,
uint32_t aEndOffset) {
if (NS_WARN_IF(!RangeUtils::IsValidPoints(aStartContainer, aStartOffset,
aEndContainer, aEndOffset))) {
return NS_ERROR_INVALID_ARG;
}
return InitInternal(RawRangeBoundary(aStartContainer, aStartOffset),
RawRangeBoundary(aEndContainer, aEndOffset));
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(nsresult, Init, const RawRangeBoundary&,
const RawRangeBoundary&);
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::Init(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd) {
if (NS_WARN_IF(!RangeUtils::IsValidPoints(aStart, aEnd))) {
return NS_ERROR_INVALID_ARG;
}
return InitInternal(aStart, aEnd);
}
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::InitWithoutValidatingPoints(
const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd) {
MOZ_DIAGNOSTIC_ASSERT(RangeUtils::IsValidPoints(aStart, aEnd));
return InitInternal(aStart, aEnd);
}
template <typename NodeType>
class MOZ_STACK_CLASS ContentIteratorBase<NodeType>::Initializer final {
public:
Initializer(ContentIteratorBase<NodeType>& aIterator,
const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd)
: mIterator{aIterator},
mStart{aStart},
mEnd{aEnd},
mStartIsCharacterData{mStart.GetContainer()->IsCharacterData()} {
MOZ_ASSERT(mStart.IsSetAndValid());
MOZ_ASSERT(mEnd.IsSetAndValid());
}
nsresult Run();
private:
/**
* @return may be nullptr.
*/
nsINode* DetermineFirstNode() const;
/**
* @return may be nullptr.
*/
[[nodiscard]] Result<nsINode*, nsresult> DetermineLastNode() const;
bool IsCollapsedNonCharacterRange() const;
bool IsSingleNodeCharacterRange() const;
ContentIteratorBase& mIterator;
const RawRangeBoundary& mStart;
const RawRangeBoundary& mEnd;
const bool mStartIsCharacterData;
};
template <>
nsresult ContentIteratorBase<RefPtr<nsINode>>::InitInternal(
const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd) {
Initializer initializer{*this, aStart, aEnd};
return initializer.Run();
}
template <>
nsresult ContentIteratorBase<nsINode*>::InitInternal(
const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd) {
Initializer initializer{*this, aStart, aEnd};
nsresult rv = initializer.Run();
if (NS_FAILED(rv)) {
return rv;
}
mMutationGuard.emplace();
mAssertNoGC.emplace();
return NS_OK;
}
template <typename NodeType>
bool ContentIteratorBase<NodeType>::Initializer::IsCollapsedNonCharacterRange()
const {
return !mStartIsCharacterData && mStart == mEnd;
}
template <typename NodeType>
bool ContentIteratorBase<NodeType>::Initializer::IsSingleNodeCharacterRange()
const {
return mStartIsCharacterData && mStart.GetContainer() == mEnd.GetContainer();
}
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::Initializer::Run() {
// get common content parent
mIterator.mClosestCommonInclusiveAncestor =
nsContentUtils::GetClosestCommonInclusiveAncestor(mStart.GetContainer(),
mEnd.GetContainer());
if (NS_WARN_IF(!mIterator.mClosestCommonInclusiveAncestor)) {
return NS_ERROR_FAILURE;
}
// Check to see if we have a collapsed range, if so, there is nothing to
// iterate over.
//
// XXX: CharacterDataNodes (text nodes) are currently an exception, since
// we always want to be able to iterate text nodes at the end points
// of a range.
if (IsCollapsedNonCharacterRange()) {
mIterator.SetEmpty();
return NS_OK;
}
if (IsSingleNodeCharacterRange()) {
mIterator.mFirst = mStart.GetContainer()->AsContent();
mIterator.mLast = mIterator.mFirst;
mIterator.mCurNode = mIterator.mFirst;
return NS_OK;
}
mIterator.mFirst = DetermineFirstNode();
if (Result<nsINode*, nsresult> lastNode = DetermineLastNode();
NS_WARN_IF(lastNode.isErr())) {
return lastNode.unwrapErr();
} else {
mIterator.mLast = lastNode.unwrap();
}
// If either first or last is null, they both have to be null!
if (!mIterator.mFirst || !mIterator.mLast) {
mIterator.SetEmpty();
}
mIterator.mCurNode = mIterator.mFirst;
return NS_OK;
}
template <typename NodeType>
nsINode* ContentIteratorBase<NodeType>::Initializer::DetermineFirstNode()
const {
nsIContent* cChild = nullptr;
// Try to get the child at our starting point. This might return null if
// mStart is immediately after the last node in mStart.GetContainer().
if (!mStartIsCharacterData) {
cChild = mStart.GetChildAtOffset();
}
if (!cChild) {
// No children (possibly a <br> or text node), or index is after last child.
if (mIterator.mOrder == Order::Pre) {
// XXX: In the future, if start offset is after the last
// character in the cdata node, should we set mFirst to
// the next sibling?
// Normally we would skip the start node because the start node is outside
// of the range in pre mode. However, if aStartOffset == 0, and the node
// is a non-container node (e.g. <br>), we don't skip the node in this
// case in order to address bug 1215798.
bool startIsContainer = true;
if (mStart.GetContainer()->IsHTMLElement()) {
nsAtom* name = mStart.GetContainer()->NodeInfo()->NameAtom();
startIsContainer =
nsHTMLElement::IsContainer(nsHTMLTags::AtomTagToId(name));
}
if (!mStartIsCharacterData &&
(startIsContainer || !mStart.IsStartOfContainer())) {
nsINode* const result =
ContentIteratorBase::GetNextSibling(mStart.GetContainer());
NS_WARNING_ASSERTION(result, "GetNextSibling returned null");
// Does mFirst node really intersect the range? The range could be
// 'degenerate', i.e., not collapsed but still contain no content.
if (result &&
NS_WARN_IF(!NodeIsInTraversalRange(
result, mIterator.mOrder == Order::Pre, mStart, mEnd))) {
return nullptr;
}
return result;
}
return mStart.GetContainer()->AsContent();
}
// post-order
if (NS_WARN_IF(!mStart.GetContainer()->IsContent())) {
// What else can we do?
return nullptr;
}
return mStart.GetContainer()->AsContent();
}
if (mIterator.mOrder == Order::Pre) {
return cChild;
}
// post-order
nsINode* const result = ContentIteratorBase::GetDeepFirstChild(cChild);
NS_WARNING_ASSERTION(result, "GetDeepFirstChild returned null");
// Does mFirst node really intersect the range? The range could be
// 'degenerate', i.e., not collapsed but still contain no content.
if (result && !NodeIsInTraversalRange(result, mIterator.mOrder == Order::Pre,
mStart, mEnd)) {
return nullptr;
}
return result;
}
template <typename NodeType>
Result<nsINode*, nsresult>
ContentIteratorBase<NodeType>::Initializer::DetermineLastNode() const {
const bool endIsCharacterData = mEnd.GetContainer()->IsCharacterData();
if (endIsCharacterData || !mEnd.GetContainer()->HasChildren() ||
mEnd.IsStartOfContainer()) {
if (mIterator.mOrder == Order::Pre) {
if (NS_WARN_IF(!mEnd.GetContainer()->IsContent())) {
// Not much else to do here...
return nullptr;
}
// If the end node is a non-container element and the end offset is 0,
// the last element should be the previous node (i.e., shouldn't
// include the end node in the range).
bool endIsContainer = true;
if (mEnd.GetContainer()->IsHTMLElement()) {
nsAtom* name = mEnd.GetContainer()->NodeInfo()->NameAtom();
endIsContainer =
nsHTMLElement::IsContainer(nsHTMLTags::AtomTagToId(name));
}
if (!endIsCharacterData && !endIsContainer && mEnd.IsStartOfContainer()) {
nsINode* const result = mIterator.PrevNode(mEnd.GetContainer());
NS_WARNING_ASSERTION(result, "PrevNode returned null");
if (result && result != mIterator.mFirst &&
NS_WARN_IF(!NodeIsInTraversalRange(
result, mIterator.mOrder == Order::Pre,
RawRangeBoundary(mIterator.mFirst, 0u), mEnd))) {
return nullptr;
}
return result;
}
return mEnd.GetContainer()->AsContent();
}
// post-order
//
// XXX: In the future, if end offset is before the first character in the
// cdata node, should we set mLast to the prev sibling?
if (!endIsCharacterData) {
nsINode* const result =
ContentIteratorBase::GetPrevSibling(mEnd.GetContainer());
NS_WARNING_ASSERTION(result, "GetPrevSibling returned null");
if (!NodeIsInTraversalRange(result, mIterator.mOrder == Order::Pre,
mStart, mEnd)) {
return nullptr;
}
return result;
}
return mEnd.GetContainer()->AsContent();
}
nsIContent* cChild = mEnd.Ref();
if (NS_WARN_IF(!cChild)) {
// No child at offset!
MOZ_ASSERT_UNREACHABLE("ContentIterator::ContentIterator");
return Err(NS_ERROR_FAILURE);
}
if (mIterator.mOrder == Order::Pre) {
nsINode* const result = ContentIteratorBase::GetDeepLastChild(cChild);
NS_WARNING_ASSERTION(result, "GetDeepLastChild returned null");
if (NS_WARN_IF(!NodeIsInTraversalRange(
result, mIterator.mOrder == Order::Pre, mStart, mEnd))) {
return nullptr;
}
return result;
}
// post-order
return cChild;
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(void, SetEmpty);
template <typename NodeType>
void ContentIteratorBase<NodeType>::SetEmpty() {
mCurNode = nullptr;
mFirst = nullptr;
mLast = nullptr;
mClosestCommonInclusiveAncestor = nullptr;
}
// static
template <typename NodeType>
nsINode* ContentIteratorBase<NodeType>::GetDeepFirstChild(nsINode* aRoot) {
if (NS_WARN_IF(!aRoot) || !aRoot->HasChildren()) {
return aRoot;
}
return ContentIteratorBase::GetDeepFirstChild(aRoot->GetFirstChild());
}
// static
template <typename NodeType>
nsIContent* ContentIteratorBase<NodeType>::GetDeepFirstChild(
nsIContent* aRoot, bool aAllowCrossShadowBoundary) {
if (NS_WARN_IF(!aRoot)) {
return nullptr;
}
nsIContent* node = aRoot;
nsIContent* child = nullptr;
if (ShadowRoot* shadowRoot = ShadowDOMSelectionHelpers::GetShadowRoot(
node, aAllowCrossShadowBoundary)) {
// When finding the deepest child of node, if this node has a
// web exposed shadow root, we use this shadow root to find the deepest
// child.
// If the first candidate should be a slotted content,
// shadowRoot->GetFirstChild() should be able to return the <slot> element.
// It's probably correct I think. Then it's up to the caller of this
// iterator to decide whether to use the slot's assigned nodes or not.
MOZ_ASSERT(aAllowCrossShadowBoundary);
child = shadowRoot->GetFirstChild();
} else {
child = node->GetFirstChild();
}
while (child) {
node = child;
if (ShadowRoot* shadowRoot = ShadowDOMSelectionHelpers::GetShadowRoot(
node, aAllowCrossShadowBoundary)) {
// When finding the deepest child of node, if this node has a
// web exposed shadow root, we use this shadow root to find the deepest
// child.
// If the first candidate should be a slotted content,
// shadowRoot->GetFirstChild() should be able to return the <slot>
// element. It's probably correct I think. Then it's up to the caller of
// this iterator to decide whether to use the slot's assigned nodes or
// not.
child = shadowRoot->GetFirstChild();
} else {
child = node->GetFirstChild();
}
}
return node;
}
// static
template <typename NodeType>
nsINode* ContentIteratorBase<NodeType>::GetDeepLastChild(nsINode* aRoot) {
if (NS_WARN_IF(!aRoot) || !aRoot->HasChildren()) {
return aRoot;
}
return ContentIteratorBase::GetDeepLastChild(aRoot->GetLastChild());
}
// static
template <typename NodeType>
nsIContent* ContentIteratorBase<NodeType>::GetDeepLastChild(
nsIContent* aRoot, bool aAllowCrossShadowBoundary) {
if (NS_WARN_IF(!aRoot)) {
return nullptr;
}
nsIContent* node = aRoot;
ShadowRoot* shadowRoot =
ShadowDOMSelectionHelpers::GetShadowRoot(node, aAllowCrossShadowBoundary);
// FIXME(sefeng): This doesn't work with slots / flattened tree.
while (node->HasChildren() || (shadowRoot && shadowRoot->HasChildren())) {
if (node->HasChildren()) {
node = node->GetLastChild();
} else {
MOZ_ASSERT(shadowRoot);
// If this node doesn't have a child, but it's also a shadow host
// that can be selected, we go into this shadow tree.
node = shadowRoot->GetLastChild();
}
shadowRoot = ShadowDOMSelectionHelpers::GetShadowRoot(
node, aAllowCrossShadowBoundary);
}
return node;
}
// Get the next sibling, or parent's next sibling, or shadow host's next
// sibling (when aAllowCrossShadowBoundary is true), or grandpa's next
// sibling...
//
// static
//
template <typename NodeType>
nsIContent* ContentIteratorBase<NodeType>::GetNextSibling(
nsINode* aNode, bool aAllowCrossShadowBoundary) {
if (NS_WARN_IF(!aNode)) {
return nullptr;
}
if (nsIContent* next = aNode->GetNextSibling()) {
return next;
}
nsINode* parent = ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*aNode, aAllowCrossShadowBoundary);
if (NS_WARN_IF(!parent)) {
return nullptr;
}
if (aAllowCrossShadowBoundary) {
// This is temporary solution.
// For shadow root, instead of getting to the sibling of the parent
// directly, we need to get into the light tree of the parent to handle
// slotted contents.
if (aNode->IsShadowRoot()) {
if (nsIContent* child = parent->GetFirstChild()) {
return child;
}
}
}
return ContentIteratorBase::GetNextSibling(parent, aAllowCrossShadowBoundary);
}
// Get the prev sibling, or parent's prev sibling, or shadow host's prev sibling
// (when aAllowCrossShadowBoundary is true), or grandpa's prev sibling... static
template <typename NodeType>
nsIContent* ContentIteratorBase<NodeType>::GetPrevSibling(
nsINode* aNode, bool aAllowCrossShadowBoundary) {
if (NS_WARN_IF(!aNode)) {
return nullptr;
}
if (nsIContent* prev = aNode->GetPreviousSibling()) {
return prev;
}
nsINode* parent = ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*aNode, aAllowCrossShadowBoundary);
if (NS_WARN_IF(!parent)) {
return nullptr;
}
return ContentIteratorBase::GetPrevSibling(parent, aAllowCrossShadowBoundary);
}
template <typename NodeType>
nsINode* ContentIteratorBase<NodeType>::NextNode(nsINode* aNode) {
nsINode* node = aNode;
// if we are a Pre-order iterator, use pre-order
if (mOrder == Order::Pre) {
// if it has children then next node is first child
if (node->HasChildren()) {
nsIContent* firstChild = node->GetFirstChild();
MOZ_ASSERT(firstChild);
return firstChild;
}
// else next sibling is next
return ContentIteratorBase::GetNextSibling(node);
}
// post-order
nsINode* parent = node->GetParentNode();
if (NS_WARN_IF(!parent)) {
MOZ_ASSERT(parent, "The node is the root node but not the last node");
mCurNode = nullptr;
return node;
}
if (nsIContent* sibling = node->GetNextSibling()) {
// next node is sibling's "deep left" child
return ContentIteratorBase::GetDeepFirstChild(sibling);
}
return parent;
}
template <typename NodeType>
nsINode* ContentIteratorBase<NodeType>::PrevNode(nsINode* aNode) {
nsINode* node = aNode;
// if we are a Pre-order iterator, use pre-order
if (mOrder == Order::Pre) {
nsINode* parent = node->GetParentNode();
if (NS_WARN_IF(!parent)) {
MOZ_ASSERT(parent, "The node is the root node but not the first node");
mCurNode = nullptr;
return aNode;
}
nsIContent* sibling = node->GetPreviousSibling();
if (sibling) {
return ContentIteratorBase::GetDeepLastChild(sibling);
}
return parent;
}
// post-order
if (node->HasChildren()) {
return node->GetLastChild();
}
// else prev sibling is previous
return ContentIteratorBase::GetPrevSibling(node);
}
/******************************************************
* ContentIteratorBase routines
******************************************************/
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(void, First);
template <typename NodeType>
void ContentIteratorBase<NodeType>::First() {
if (!mFirst) {
MOZ_ASSERT(IsDone());
mCurNode = nullptr;
return;
}
mozilla::DebugOnly<nsresult> rv = PositionAt(mFirst);
NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!");
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(void, Last);
template <typename NodeType>
void ContentIteratorBase<NodeType>::Last() {
// Note that mLast can be nullptr if SetEmpty() is called in Init()
// since at that time, Init() returns NS_OK.
if (!mLast) {
MOZ_ASSERT(IsDone());
mCurNode = nullptr;
return;
}
mozilla::DebugOnly<nsresult> rv = PositionAt(mLast);
NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!");
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(void, Next);
template <typename NodeType>
void ContentIteratorBase<NodeType>::Next() {
if (IsDone()) {
return;
}
if (mCurNode == mLast) {
mCurNode = nullptr;
return;
}
mCurNode = NextNode(mCurNode);
}
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(void, Prev);
template <typename NodeType>
void ContentIteratorBase<NodeType>::Prev() {
if (IsDone()) {
return;
}
if (mCurNode == mFirst) {
mCurNode = nullptr;
return;
}
mCurNode = PrevNode(mCurNode);
}
// Keeping arrays of indexes for the stack of nodes makes PositionAt
// interesting...
NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD(nsresult, PositionAt, nsINode*);
template <typename NodeType>
nsresult ContentIteratorBase<NodeType>::PositionAt(nsINode* aCurNode) {
if (NS_WARN_IF(!aCurNode)) {
return NS_ERROR_NULL_POINTER;
}
// take an early out if this doesn't actually change the position
if (mCurNode == aCurNode) {
return NS_OK;
}
mCurNode = aCurNode;
// Check to see if the node falls within the traversal range.
RawRangeBoundary first(mFirst, 0u);
RawRangeBoundary last(mLast, 0u);
if (mFirst && mLast) {
if (mOrder == Order::Pre) {
// In pre we want to record the point immediately before mFirst, which is
// the point immediately after mFirst's previous sibling.
first = {mFirst->GetParentNode(), mFirst->GetPreviousSibling()};
// If mLast has no children, then we want to make sure to include it.
if (!mLast->HasChildren()) {
last = {mLast->GetParentNode(), mLast->AsContent()};
}
} else {
// If the first node has any children, we want to be immediately after the
// last. Otherwise we want to be immediately before mFirst.
if (mFirst->HasChildren()) {
first = {mFirst, mFirst->GetLastChild()};
} else {
first = {mFirst->GetParentNode(), mFirst->GetPreviousSibling()};
}
// Set the last point immediately after the final node.
last = {mLast->GetParentNode(), mLast->AsContent()};
}
}
NS_WARNING_ASSERTION(first.IsSetAndValid(), "first is not valid");
NS_WARNING_ASSERTION(last.IsSetAndValid(), "last is not valid");
// The end positions are always in the range even if it has no parent. We
// need to allow that or 'iter->Init(root)' would assert in Last() or First()
// for example, bug 327694.
if (mFirst != mCurNode && mLast != mCurNode &&
(NS_WARN_IF(!first.IsSet()) || NS_WARN_IF(!last.IsSet()) ||
NS_WARN_IF(!NodeIsInTraversalRange(mCurNode, mOrder == Order::Pre, first,
last)))) {
mCurNode = nullptr;
return NS_ERROR_FAILURE;
}
return NS_OK;
}
/******************************************************
* ContentSubtreeIterator init routines
******************************************************/
nsresult ContentSubtreeIterator::Init(nsINode* aRoot) {
return NS_ERROR_NOT_IMPLEMENTED;
}
nsresult ContentSubtreeIterator::Init(AbstractRange* aRange) {
MOZ_ASSERT(aRange);
if (NS_WARN_IF(!aRange->IsPositioned())) {
return NS_ERROR_INVALID_ARG;
}
mRange = aRange;
return InitWithRange();
}
nsresult ContentSubtreeIterator::Init(nsINode* aStartContainer,
uint32_t aStartOffset,
nsINode* aEndContainer,
uint32_t aEndOffset) {
return Init(RawRangeBoundary(aStartContainer, aStartOffset),
RawRangeBoundary(aEndContainer, aEndOffset));
}
nsresult ContentSubtreeIterator::Init(const RawRangeBoundary& aStartBoundary,
const RawRangeBoundary& aEndBoundary) {
RefPtr<nsRange> range =
nsRange::Create(aStartBoundary, aEndBoundary, IgnoreErrors());
if (NS_WARN_IF(!range) || NS_WARN_IF(!range->IsPositioned())) {
return NS_ERROR_INVALID_ARG;
}
if (NS_WARN_IF(range->StartRef() != aStartBoundary) ||
NS_WARN_IF(range->EndRef() != aEndBoundary)) {
return NS_ERROR_UNEXPECTED;
}
mRange = std::move(range);
return InitWithRange();
}
nsresult ContentSubtreeIterator::InitWithAllowCrossShadowBoundary(
AbstractRange* aRange) {
MOZ_ASSERT(aRange);
if (NS_WARN_IF(!aRange->IsPositioned())) {
return NS_ERROR_INVALID_ARG;
}
mRange = aRange;
mAllowCrossShadowBoundary = AllowRangeCrossShadowBoundary::Yes;
return InitWithRange();
}
void ContentSubtreeIterator::CacheInclusiveAncestorsOfEndContainer() {
mInclusiveAncestorsOfEndContainer.Clear();
nsINode* const endContainer = ShadowDOMSelectionHelpers::GetEndContainer(
mRange, IterAllowCrossShadowBoundary());
nsIContent* endNode =
endContainer->IsContent() ? endContainer->AsContent() : nullptr;
while (endNode) {
mInclusiveAncestorsOfEndContainer.AppendElement(endNode);
// Cross the boundary for contents in shadow tree.
nsINode* parent = ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*endNode, IterAllowCrossShadowBoundary());
if (!parent || !parent->IsContent()) {
break;
}
endNode = parent->AsContent();
}
}
nsIContent* ContentSubtreeIterator::DetermineCandidateForFirstContent() const {
nsINode* startContainer = ShadowDOMSelectionHelpers::GetStartContainer(
mRange, IterAllowCrossShadowBoundary());
nsIContent* firstCandidate = nullptr;
// find first node in range
nsINode* node = nullptr;
if (!startContainer->GetChildCount()) {
// no children, start at the node itself
node = startContainer;
} else {
nsIContent* child =
IterAllowCrossShadowBoundary()
? mRange->GetMayCrossShadowBoundaryChildAtStartOffset()
: mRange->GetChildAtStartOffset();
MOZ_ASSERT(child == startContainer->GetChildAt_Deprecated(
ShadowDOMSelectionHelpers::StartOffset(
mRange, IterAllowCrossShadowBoundary())));
if (!child) {
// offset after last child
node = startContainer;
} else {
firstCandidate = child;
}
}
if (!firstCandidate) {
// then firstCandidate is next node after node
firstCandidate = ContentIteratorBase::GetNextSibling(
node, IterAllowCrossShadowBoundary());
}
if (firstCandidate) {
firstCandidate = ContentIteratorBase::GetDeepFirstChild(
firstCandidate, IterAllowCrossShadowBoundary());
}
return firstCandidate;
}
nsIContent* ContentSubtreeIterator::DetermineFirstContent() const {
nsIContent* firstCandidate = DetermineCandidateForFirstContent();
if (!firstCandidate) {
return nullptr;
}
// confirm that this first possible contained node is indeed contained. Else
// we have a range that does not fully contain any node.
const Maybe<bool> isNodeContainedInRange =
RangeUtils::IsNodeContainedInRange(*firstCandidate, mRange);
MOZ_ALWAYS_TRUE(isNodeContainedInRange);
if (!isNodeContainedInRange.value()) {
return nullptr;
}
// cool, we have the first node in the range. Now we walk up its ancestors
// to find the most senior that is still in the range. That's the real first
// node.
return GetTopAncestorInRange(firstCandidate);
}
nsIContent* ContentSubtreeIterator::DetermineCandidateForLastContent() const {
nsIContent* lastCandidate{nullptr};
nsINode* endContainer = ShadowDOMSelectionHelpers::GetEndContainer(
mRange, IterAllowCrossShadowBoundary());
// now to find the last node
int32_t offset = ShadowDOMSelectionHelpers::EndOffset(
mRange, IterAllowCrossShadowBoundary());
int32_t numChildren = endContainer->GetChildCount();
nsINode* node = nullptr;
if (offset > numChildren) {
// Can happen for text nodes
offset = numChildren;
}
if (!offset || !numChildren) {
node = endContainer;
} else {
lastCandidate = IterAllowCrossShadowBoundary()
? mRange->MayCrossShadowBoundaryEndRef().Ref()
: mRange->EndRef().Ref();
MOZ_ASSERT(lastCandidate == endContainer->GetChildAt_Deprecated(--offset));
NS_ASSERTION(lastCandidate,
"tree traversal trouble in ContentSubtreeIterator::Init");
}
if (!lastCandidate) {
// then lastCandidate is prev node before node
lastCandidate = ContentIteratorBase::GetPrevSibling(
node, IterAllowCrossShadowBoundary());
}
if (lastCandidate) {
lastCandidate = ContentIteratorBase::GetDeepLastChild(
lastCandidate, IterAllowCrossShadowBoundary());
}
return lastCandidate;
}
nsresult ContentSubtreeIterator::InitWithRange() {
MOZ_ASSERT(mRange);
MOZ_ASSERT(mRange->IsPositioned());
// get the start node and offset, convert to nsINode
mClosestCommonInclusiveAncestor =
mRange->GetClosestCommonInclusiveAncestor(mAllowCrossShadowBoundary);
nsINode* startContainer = ShadowDOMSelectionHelpers::GetStartContainer(
mRange, IterAllowCrossShadowBoundary());
const int32_t startOffset = ShadowDOMSelectionHelpers::StartOffset(
mRange, IterAllowCrossShadowBoundary());
nsINode* endContainer = ShadowDOMSelectionHelpers::GetEndContainer(
mRange, IterAllowCrossShadowBoundary());
const int32_t endOffset = ShadowDOMSelectionHelpers::EndOffset(
mRange, IterAllowCrossShadowBoundary());
MOZ_ASSERT(mClosestCommonInclusiveAncestor && startContainer && endContainer);
// Bug 767169
MOZ_ASSERT(uint32_t(startOffset) <= startContainer->Length() &&
uint32_t(endOffset) <= endContainer->Length());
// short circuit when start node == end node
if (startContainer == endContainer) {
nsINode* child = startContainer->GetFirstChild();
if (!child || startOffset == endOffset) {
// Text node, empty container, or collapsed
SetEmpty();
return NS_OK;
}
}
CacheInclusiveAncestorsOfEndContainer();
mFirst = DetermineFirstContent();
if (!mFirst) {
SetEmpty();
return NS_OK;
}
mLast = DetermineLastContent();
if (!mLast) {
SetEmpty();
return NS_OK;
}
mCurNode = mFirst;
return NS_OK;
}
nsIContent* ContentSubtreeIterator::DetermineLastContent() const {
nsIContent* lastCandidate = DetermineCandidateForLastContent();
if (!lastCandidate) {
return nullptr;
}
// confirm that this last possible contained node is indeed contained. Else
// we have a range that does not fully contain any node.
const Maybe<bool> isNodeContainedInRange =
RangeUtils::IsNodeContainedInRange(*lastCandidate, mRange);
MOZ_ALWAYS_TRUE(isNodeContainedInRange);
if (!isNodeContainedInRange.value()) {
return nullptr;
}
// cool, we have the last node in the range. Now we walk up its ancestors to
// find the most senior that is still in the range. That's the real first
// node.
return GetTopAncestorInRange(lastCandidate);
}
/****************************************************************
* ContentSubtreeIterator overrides of ContentIterator routines
****************************************************************/
// we can't call PositionAt in a subtree iterator...
void ContentSubtreeIterator::First() { mCurNode = mFirst; }
// we can't call PositionAt in a subtree iterator...
void ContentSubtreeIterator::Last() { mCurNode = mLast; }
void ContentSubtreeIterator::Next() {
if (IsDone()) {
return;
}
if (mCurNode == mLast) {
mCurNode = nullptr;
return;
}
nsINode* nextNode = ContentIteratorBase::GetNextSibling(
mCurNode, IterAllowCrossShadowBoundary());
NS_ASSERTION(nextNode, "No next sibling!?! This could mean deadlock!");
int32_t i = mInclusiveAncestorsOfEndContainer.IndexOf(nextNode);
while (i != -1) {
// as long as we are finding ancestors of the endpoint of the range,
// dive down into their children
ShadowRoot* root = ShadowDOMSelectionHelpers::GetShadowRoot(
nextNode, IterAllowCrossShadowBoundary());
if (!root) {
nextNode = nextNode->GetFirstChild();
} else {
// If IterAllowCrossShadowBoundary() returns true, it means we should
// use shadow-including order for this iterator, that means the shadow
// root should always be iterated.
nextNode = IterAllowCrossShadowBoundary() ? root->GetFirstChild()
: nextNode->GetFirstChild();
}
NS_ASSERTION(nextNode, "Iterator error, expected a child node!");
// should be impossible to get a null pointer. If we went all the way
// down the child chain to the bottom without finding an interior node,
// then the previous node should have been the last, which was
// was tested at top of routine.
i = mInclusiveAncestorsOfEndContainer.IndexOf(nextNode);
}
mCurNode = nextNode;
}
void ContentSubtreeIterator::Prev() {
// Prev should be optimized to use the mStartNodes, just as Next
// uses mInclusiveAncestorsOfEndContainer.
if (IsDone()) {
return;
}
if (mCurNode == mFirst) {
mCurNode = nullptr;
return;
}
// If any of these function calls return null, so will all succeeding ones,
// so mCurNode will wind up set to null.
nsINode* prevNode = ContentIteratorBase::GetDeepFirstChild(mCurNode);
prevNode = PrevNode(prevNode);
prevNode = ContentIteratorBase::GetDeepLastChild(prevNode);
mCurNode = GetTopAncestorInRange(prevNode);
}
nsresult ContentSubtreeIterator::PositionAt(nsINode* aCurNode) {
NS_ERROR("Not implemented!");
return NS_ERROR_NOT_IMPLEMENTED;
}
/****************************************************************
* ContentSubtreeIterator helper routines
****************************************************************/
nsIContent* ContentSubtreeIterator::GetTopAncestorInRange(
nsINode* aNode) const {
if (!aNode || !ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*aNode, IterAllowCrossShadowBoundary())) {
return nullptr;
}
// aNode has a parent, so it must be content.
nsIContent* content = aNode->AsContent();
// sanity check: aNode is itself in the range
Maybe<bool> isNodeContainedInRange =
RangeUtils::IsNodeContainedInRange(*aNode, mRange);
NS_ASSERTION(isNodeContainedInRange && isNodeContainedInRange.value(),
"aNode isn't in mRange, or something else weird happened");
if (!isNodeContainedInRange || !isNodeContainedInRange.value()) {
return nullptr;
}
nsIContent* lastContentInShadowTree = nullptr;
while (content) {
nsINode* parent = ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*content, IterAllowCrossShadowBoundary());
// content always has a parent. If its parent is the root, however --
// i.e., either it's not content, or it is content but its own parent is
// null -- then we're finished, since we don't go up to the root.
//
// Caveat: If iteration crossing shadow boundary is allowed
// and the root is a shadow root, we keep going up to the
// shadow host and continue.
//
// We have to special-case this because CompareNodeToRange treats the root
// node differently -- see bug 765205.
if (!parent || !ShadowDOMSelectionHelpers::GetParentNodeInSameSelection(
*parent, IterAllowCrossShadowBoundary())) {
return content;
}
isNodeContainedInRange =
RangeUtils::IsNodeContainedInRange(*parent, mRange);
MOZ_ALWAYS_TRUE(isNodeContainedInRange);
if (!isNodeContainedInRange.value()) {
if (IterAllowCrossShadowBoundary() && content->IsShadowRoot()) {
MOZ_ASSERT(parent->GetShadowRoot() == content);
// host element is not in range, the last content in tree
// should be the ancestor.
MOZ_ASSERT(lastContentInShadowTree);
return lastContentInShadowTree;
}
return content;
}
// When we cross the boundary, we keep a reference to the
// last content that is in tree, because if we later
// find the shadow host element is not in the range, that means
// the last content in the tree should be top ancestor in range.
//
// Using shadow root doesn't make sense here because it doesn't
// represent a actual content.
if (IterAllowCrossShadowBoundary() && parent->IsShadowRoot()) {
lastContentInShadowTree = content;
}
content = parent->AsContent();
}
MOZ_CRASH("This should only be possible if aNode was null");
}
#undef NS_INSTANTIATE_CONTENT_ITER_BASE_METHOD
} // namespace mozilla