164 lines
5.5 KiB
C++
164 lines
5.5 KiB
C++
#include "VariableUsageHelpers.h"
|
|
#include "Utils.h"
|
|
|
|
std::vector<const Stmt*>
|
|
getUsageAsRvalue(const ValueDecl* ValueDeclaration,
|
|
const FunctionDecl* FuncDecl) {
|
|
std::vector<const Stmt*> UsageStatements;
|
|
|
|
// We check the function declaration has a body.
|
|
auto Body = FuncDecl->getBody();
|
|
if (!Body) {
|
|
return std::vector<const Stmt*>();
|
|
}
|
|
|
|
// We build a Control Flow Graph (CFG) fron the body of the function
|
|
// declaration.
|
|
std::unique_ptr<CFG> StatementCFG
|
|
= CFG::buildCFG(FuncDecl, Body, &FuncDecl->getASTContext(),
|
|
CFG::BuildOptions());
|
|
|
|
// We iterate through all the CFGBlocks, which basically means that we go over
|
|
// all the possible branches of the code and therefore cover all statements.
|
|
for (auto& Block : *StatementCFG) {
|
|
// We iterate through all the statements of the block.
|
|
for (auto& BlockItem : *Block) {
|
|
Optional<CFGStmt> CFGStatement = BlockItem.getAs<CFGStmt>();
|
|
if (!CFGStatement) {
|
|
continue;
|
|
}
|
|
|
|
// FIXME: Right now this function/if chain is very basic and only covers
|
|
// the cases we need for escapesFunction()
|
|
if (auto BinOp = dyn_cast<BinaryOperator>(CFGStatement->getStmt())) {
|
|
// We only care about assignments.
|
|
if (BinOp->getOpcode() != BO_Assign) {
|
|
continue;
|
|
}
|
|
|
|
// We want our declaration to be used on the right hand side of the
|
|
// assignment.
|
|
auto DeclRef = dyn_cast<DeclRefExpr>(IgnoreTrivials(BinOp->getRHS()));
|
|
if (!DeclRef) {
|
|
continue;
|
|
}
|
|
|
|
if (DeclRef->getDecl() != ValueDeclaration) {
|
|
continue;
|
|
}
|
|
} else if (auto Return = dyn_cast<ReturnStmt>(CFGStatement->getStmt())) {
|
|
// We want our declaration to be used as the expression of the return
|
|
// statement.
|
|
auto DeclRef = dyn_cast_or_null<DeclRefExpr>(
|
|
IgnoreTrivials(Return->getRetValue()));
|
|
if (!DeclRef) {
|
|
continue;
|
|
}
|
|
|
|
if (DeclRef->getDecl() != ValueDeclaration) {
|
|
continue;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// We didn't early-continue, so we add the statement to the list.
|
|
UsageStatements.push_back(CFGStatement->getStmt());
|
|
}
|
|
}
|
|
|
|
return UsageStatements;
|
|
}
|
|
|
|
Optional<std::tuple<const Stmt*, const Decl*>>
|
|
escapesFunction(const Expr* Arg, const CallExpr* Call) {
|
|
// We get the function declaration corresponding to the call.
|
|
auto FuncDecl = Call->getDirectCallee();
|
|
if (!FuncDecl) {
|
|
return NoneType();
|
|
}
|
|
|
|
// We find the argument number corresponding to the Arg expression.
|
|
unsigned ArgNum = 0;
|
|
for (auto CallArg : Call->arguments()) {
|
|
if (IgnoreTrivials(Arg) == IgnoreTrivials(CallArg)) {
|
|
break;
|
|
}
|
|
++ArgNum;
|
|
}
|
|
// If we don't find it, we early-return NoneType.
|
|
if (ArgNum >= Call->getNumArgs()) {
|
|
return NoneType();
|
|
}
|
|
|
|
// Now we get the associated parameter.
|
|
if (ArgNum >= FuncDecl->getNumParams()) {
|
|
return NoneType();
|
|
}
|
|
auto Param = FuncDecl->getParamDecl(ArgNum);
|
|
|
|
// We want both the argument and the parameter to be of pointer type.
|
|
// FIXME: this is enough for the DanglingOnTemporaryChecker, because the
|
|
// analysed methods only return pointers, but more cases should probably be
|
|
// handled when we want to use this function more broadly.
|
|
if (!Arg->getType()->isPointerType()
|
|
|| !Param->getType()->isPointerType()) {
|
|
return NoneType();
|
|
}
|
|
|
|
// We retrieve the usages of the parameter in the function.
|
|
auto Usages = getUsageAsRvalue(Param, FuncDecl);
|
|
|
|
// For each usage, we check if it doesn't allow the parameter to escape the
|
|
// function scope.
|
|
for (auto Usage : Usages) {
|
|
// In the case of an assignment.
|
|
if (auto BinOp = dyn_cast<BinaryOperator>(Usage)) {
|
|
// We retrieve the declaration the parameter is assigned to.
|
|
auto DeclRef = dyn_cast<DeclRefExpr>(BinOp->getLHS());
|
|
if (!DeclRef) {
|
|
continue;
|
|
}
|
|
|
|
if (auto ParamDeclaration = dyn_cast<ParmVarDecl>(DeclRef->getDecl())) {
|
|
// This is the case where the parameter escapes through another
|
|
// parameter.
|
|
|
|
// FIXME: for now we only care about references because we only detect
|
|
// trivial LHS with just a DeclRefExpr, and not more complex cases like:
|
|
// void func(Type* param1, Type** param2) {
|
|
// *param2 = param1;
|
|
// }
|
|
// This should be fixed when we have better/more helper functions to
|
|
// help deal with this kind of lvalue expressions.
|
|
if (!ParamDeclaration->getType()->isReferenceType()) {
|
|
continue;
|
|
}
|
|
|
|
return std::make_tuple(Usage, (const Decl*)ParamDeclaration);
|
|
} else if (auto VarDeclaration = dyn_cast<VarDecl>(DeclRef->getDecl())) {
|
|
// This is the case where the parameter escapes through a global/static
|
|
// variable.
|
|
if (!VarDeclaration->hasGlobalStorage()) {
|
|
continue;
|
|
}
|
|
|
|
return std::make_tuple(Usage, (const Decl*)VarDeclaration);
|
|
}
|
|
} else if (auto Return = dyn_cast<ReturnStmt>(Usage)) {
|
|
// This is the case where the parameter escapes through the return value
|
|
// of the function.
|
|
if (!FuncDecl->getReturnType()->isPointerType()
|
|
&& !FuncDecl->getReturnType()->isReferenceType()) {
|
|
continue;
|
|
}
|
|
|
|
return std::make_tuple(Usage, (const Decl*)FuncDecl);
|
|
}
|
|
}
|
|
|
|
// No early-return, this means that we haven't found any case of funciton
|
|
// escaping and that therefore the parameter remains in the function scope.
|
|
return std::make_tuple((const Stmt*)nullptr, (const Decl*)nullptr);
|
|
}
|