Files
tubestation/servo/components/layout/traversal.rs
Emilio Cobos Álvarez 592f0e00b4 servo: Merge #12563 - stylo: Improve restyling performance (from emilio:stylo); r=bholley,jdm,pcwalton
This commit adds hooks to the Servo style traversal to avoid traversing all the
DOM for every restyle. Additionally it changes the behavior of the dirty flag to
be propagated top down, to prevent extra overhead when an element is dirtied.

This commit doesn't aim to change the behavior on Servo just yet, since Servo does extra job when dirtying the node related with DOM revision counters that might be necessary.

CC @asajeffrey for the DOM revision counters stuff. When a node is dirty, do all its descendants really need to increment the revision counter, or is this an unintended effect? My intuition is that this is hurting performance quite a lot for servo.

r? @bholley

<!-- Please describe your changes on the following line: -->

---
<!-- Thank you for contributing to Servo! Please replace each `[ ]` by `[X]` when the step is complete, and replace `__` with appropriate data: -->
- [x] `./mach build -d` does not report any errors
- [x] `./mach test-tidy` does not report any errors

<!-- Either: -->
- [x] These changes do not require tests because no geckolib tests yet.

<!-- Pull requests that do not address these steps are welcome, but they will require additional verification as part of the review process. -->

Source-Repo: https://github.com/servo/servo
Source-Revision: 944d371b8f0e72f6aa5465be38c0c8daeab66127
2016-07-27 17:56:26 -05:00

230 lines
8.9 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use construct::FlowConstructor;
use context::{LayoutContext, SharedLayoutContext};
use display_list_builder::DisplayListBuildState;
use flow::{CAN_BE_FRAGMENTED, Flow, ImmutableFlowUtils, PostorderFlowTraversal};
use flow::{PreorderFlowTraversal, self};
use gfx::display_list::OpaqueNode;
use script_layout_interface::restyle_damage::{BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW, REPAINT, RestyleDamage};
use script_layout_interface::wrapper_traits::{LayoutNode, ThreadSafeLayoutNode};
use std::mem;
use style::context::SharedStyleContext;
use style::dom::TNode;
use style::selector_impl::ServoSelectorImpl;
use style::traversal::{DomTraversalContext, remove_from_bloom_filter, recalc_style_at};
use util::opts;
use wrapper::{LayoutNodeLayoutData, ThreadSafeLayoutNodeHelpers};
pub struct RecalcStyleAndConstructFlows<'lc> {
context: LayoutContext<'lc>,
root: OpaqueNode,
}
impl<'lc, N> DomTraversalContext<N> for RecalcStyleAndConstructFlows<'lc>
where N: LayoutNode + TNode,
N::ConcreteElement: ::selectors::Element<Impl=ServoSelectorImpl, AttrString=String>
{
type SharedContext = SharedLayoutContext;
#[allow(unsafe_code)]
fn new<'a>(shared: &'a Self::SharedContext, root: OpaqueNode) -> Self {
// FIXME(bholley): This transmutation from &'a to &'lc is very unfortunate, but I haven't
// found a way to avoid it despite spending several days on it (and consulting Manishearth,
// brson, and nmatsakis).
//
// The crux of the problem is that parameterizing DomTraversalContext on the lifetime of
// the SharedContext doesn't work for a variety of reasons [1]. However, the code in
// parallel.rs needs to be able to use the DomTraversalContext trait (or something similar)
// to stack-allocate a struct (a generalized LayoutContext<'a>) that holds a borrowed
// SharedContext, which means that the struct needs to be parameterized on a lifetime.
// Given the aforementioned constraint, the only way to accomplish this is to avoid
// propagating the borrow lifetime from the struct to the trait, but that means that the
// new() method on the trait cannot require the lifetime of its argument to match the
// lifetime of the Self object it creates.
//
// This could be solved with an associated type with an unbound lifetime parameter, but
// that would require higher-kinded types, which don't exist yet and probably aren't coming
// for a while.
//
// So we transmute. :-( This is safe because the DomTravesalContext is stack-allocated on
// the worker thread while processing a WorkUnit, whereas the borrowed SharedContext is
// live for the entire duration of the restyle. This really could _almost_ compile: all
// we'd need to do is change the signature to to |new<'a: 'lc>|, and everything would
// work great. But we can't do that, because that would cause a mismatch with the signature
// in the trait we're implementing, and we can't mention 'lc in that trait at all for the
// reasons described above.
//
// [1] For example, the WorkQueue type needs to be parameterized on the concrete type of
// DomTraversalContext::SharedContext, and the WorkQueue lifetime is similar to that of the
// LayoutThread, generally much longer than that of a given SharedLayoutContext borrow.
let shared_lc: &'lc SharedLayoutContext = unsafe { mem::transmute(shared) };
RecalcStyleAndConstructFlows {
context: LayoutContext::new(shared_lc),
root: root,
}
}
fn process_preorder(&self, node: N) {
// FIXME(pcwalton): Stop allocating here. Ideally this should just be done by the HTML
// parser.
node.initialize_data();
recalc_style_at(&self.context, self.root, node);
}
fn process_postorder(&self, node: N) {
construct_flows_at(&self.context, self.root, node);
}
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode> {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode);
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<'a, N: LayoutNode>(context: &'a LayoutContext<'a>, root: OpaqueNode, node: N) {
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout || node.is_dirty() || node.has_dirty_descendants() {
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!("Constructed flow for {:x}: {:x}",
tnode.debug_id(),
tnode.flow_debug_id());
}
}
// Reset the layout damage in this node. It's been propagated to the
// flow by the flow constructor.
tnode.set_restyle_damage(RestyleDamage::empty());
}
unsafe {
node.set_changed(false);
node.set_dirty(false);
node.set_dirty_descendants(false);
}
remove_from_bloom_filter(context, root, node);
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.bubble_inline_sizes();
flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Copy, Clone)]
pub struct AssignISizes<'a> {
pub shared_context: &'a SharedStyleContext,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.assign_inline_sizes(self.shared_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects and computes
/// positions. In Gecko this corresponds to `Reflow`.
#[derive(Copy, Clone)]
pub struct AssignBSizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
// Can't do anything with anything that floats might flow through until we reach their
// inorder parent.
//
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow.floats_might_flow_through() {
return
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
base.restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) &&
// The fragmentation countainer is responsible for calling Flow::fragment recursively
!base.flags.contains(CAN_BE_FRAGMENTED)
}
}
#[derive(Copy, Clone)]
pub struct ComputeAbsolutePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeAbsolutePositions<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.compute_absolute_position(self.layout_context);
}
}
pub struct BuildDisplayList<'a> {
pub state: DisplayListBuildState<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn traverse(&mut self, flow: &mut Flow) {
if self.should_process() {
self.state.push_stacking_context_id(flow::base(flow).stacking_context_id);
flow.build_display_list(&mut self.state);
flow::mut_base(flow).restyle_damage.remove(REPAINT);
self.state.pop_stacking_context_id();
}
for kid in flow::child_iter_mut(flow) {
self.traverse(kid);
}
}
#[inline]
fn should_process(&self) -> bool {
true
}
}