Files
tubestation/intl/icu/source/common/normalizer2impl.cpp
Alexandru Marc 52a93f69fa Backed out 19 changesets (bug 1927706) for causing reftest failures @ space-cluster-2.html
Backed out changeset 3877f1fa62f5 (bug 1927706)
Backed out changeset 233c6ebf84a2 (bug 1927706)
Backed out changeset 07e5871d5fa3 (bug 1927706)
Backed out changeset 84ef75087931 (bug 1927706)
Backed out changeset f89b916619e1 (bug 1927706)
Backed out changeset b82d9d622315 (bug 1927706)
Backed out changeset b0d2c5711865 (bug 1927706)
Backed out changeset 9529dda25bd9 (bug 1927706)
Backed out changeset 40b7907d7fc8 (bug 1927706)
Backed out changeset c549655dbd73 (bug 1927706)
Backed out changeset c5cc289771b3 (bug 1927706)
Backed out changeset 8ef66f7822c4 (bug 1927706)
Backed out changeset dff6d37fb2fe (bug 1927706)
Backed out changeset 083a0b3da643 (bug 1927706)
Backed out changeset 06649ac72a19 (bug 1927706)
Backed out changeset 019f7533abbc (bug 1927706)
Backed out changeset f1539604c459 (bug 1927706)
Backed out changeset 578667f1f0d4 (bug 1927706)
Backed out changeset 8ed1e7e7d4ab (bug 1927706)
2024-10-30 11:19:58 +02:00

2807 lines
106 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2009-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2impl.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
// #define UCPTRIE_DEBUG
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/bytestream.h"
#include "unicode/edits.h"
#include "unicode/normalizer2.h"
#include "unicode/stringoptions.h"
#include "unicode/ucptrie.h"
#include "unicode/udata.h"
#include "unicode/umutablecptrie.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "unicode/utf8.h"
#include "bytesinkutil.h"
#include "cmemory.h"
#include "mutex.h"
#include "normalizer2impl.h"
#include "putilimp.h"
#include "uassert.h"
#include "ucptrie_impl.h"
#include "uset_imp.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
namespace {
/**
* UTF-8 lead byte for minNoMaybeCP.
* Can be lower than the actual lead byte for c.
* Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
*/
inline uint8_t leadByteForCP(UChar32 c) {
if (c <= 0x7f) {
return (uint8_t)c;
} else if (c <= 0x7ff) {
return (uint8_t)(0xc0+(c>>6));
} else {
// Should not occur because ccc(U+0300)!=0.
return 0xe0;
}
}
/**
* Returns the code point from one single well-formed UTF-8 byte sequence
* between cpStart and cpLimit.
*
* Trie UTF-8 macros do not assemble whole code points (for efficiency).
* When we do need the code point, we call this function.
* We should not need it for normalization-inert data (norm16==0).
* Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
*/
UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
// Similar to U8_NEXT_UNSAFE(s, i, c).
U_ASSERT(cpStart < cpLimit);
uint8_t c = *cpStart;
switch(cpLimit-cpStart) {
case 1:
return c;
case 2:
return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
case 3:
// no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (char16_t)
return (char16_t)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
case 4:
return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
default:
UPRV_UNREACHABLE_EXIT; // Should not occur.
}
}
/**
* Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
* Otherwise returns a negative value.
*/
UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
if ((p - start) >= 3) {
p -= 3;
uint8_t l = *p;
uint8_t t1, t2;
if (0xe1 <= l && l <= 0xed &&
(t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
(t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
(l < 0xed || t1 <= 0x1f)) {
return ((l & 0xf) << 12) | (t1 << 6) | t2;
}
}
return U_SENTINEL;
}
/**
* Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
* Otherwise returns a negative value.
*/
int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
// Jamo T: E1 86 A8..E1 87 82
if ((limit - src) >= 3 && *src == 0xe1) {
if (src[1] == 0x86) {
uint8_t t = src[2];
// The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
// Offset 0 does not correspond to any conjoining Jamo.
if (0xa8 <= t && t <= 0xbf) {
return t - 0xa7;
}
} else if (src[1] == 0x87) {
uint8_t t = src[2];
if ((int8_t)t <= (int8_t)0x82u) {
return t - (0xa7 - 0x40);
}
}
}
return -1;
}
void
appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
ByteSink &sink, Edits *edits) {
char buffer[U8_MAX_LENGTH];
int32_t length;
int32_t cpLength = (int32_t)(cpLimit - cpStart);
if (cpLength == 1) {
// The builder makes ASCII map to ASCII.
buffer[0] = (uint8_t)(*cpStart + delta);
length = 1;
} else {
int32_t trail = *(cpLimit-1) + delta;
if (0x80 <= trail && trail <= 0xbf) {
// The delta only changes the last trail byte.
--cpLimit;
length = 0;
do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
buffer[length++] = (uint8_t)trail;
} else {
// Decode the code point, add the delta, re-encode.
UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
length = 0;
U8_APPEND_UNSAFE(buffer, length, c);
}
}
if (edits != nullptr) {
edits->addReplace(cpLength, length);
}
sink.Append(buffer, length);
}
} // namespace
// ReorderingBuffer -------------------------------------------------------- ***
ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
UErrorCode &errorCode) :
impl(ni), str(dest),
start(str.getBuffer(8)), reorderStart(start), limit(start),
remainingCapacity(str.getCapacity()), lastCC(0) {
if (start == nullptr && U_SUCCESS(errorCode)) {
// getBuffer() already did str.setToBogus()
errorCode = U_MEMORY_ALLOCATION_ERROR;
}
}
UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
int32_t length=str.length();
start=str.getBuffer(destCapacity);
if(start==nullptr) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return false;
}
limit=start+length;
remainingCapacity=str.getCapacity()-length;
reorderStart=start;
if(start==limit) {
lastCC=0;
} else {
setIterator();
lastCC=previousCC();
// Set reorderStart after the last code point with cc<=1 if there is one.
if(lastCC>1) {
while(previousCC()>1) {}
}
reorderStart=codePointLimit;
}
return true;
}
UBool ReorderingBuffer::equals(const char16_t *otherStart, const char16_t *otherLimit) const {
int32_t length=(int32_t)(limit-start);
return
length==(int32_t)(otherLimit-otherStart) &&
0==u_memcmp(start, otherStart, length);
}
UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller
int32_t length = (int32_t)(limit - start);
int32_t otherLength = (int32_t)(otherLimit - otherStart);
// For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
if (otherLength < length || (otherLength / 3) > length) {
return false;
}
// Compare valid strings from between normalization boundaries.
// (Invalid sequences are normalization-inert.)
for (int32_t i = 0, j = 0;;) {
if (i >= length) {
return j >= otherLength;
} else if (j >= otherLength) {
return false;
}
// Not at the end of either string yet.
UChar32 c, other;
U16_NEXT_UNSAFE(start, i, c);
U8_NEXT_UNSAFE(otherStart, j, other);
if (c != other) {
return false;
}
}
}
UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
if(remainingCapacity<2 && !resize(2, errorCode)) {
return false;
}
if(lastCC<=cc || cc==0) {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
lastCC=cc;
if(cc<=1) {
reorderStart=limit;
}
} else {
insert(c, cc);
}
remainingCapacity-=2;
return true;
}
UBool ReorderingBuffer::append(const char16_t *s, int32_t length, UBool isNFD,
uint8_t leadCC, uint8_t trailCC,
UErrorCode &errorCode) {
if(length==0) {
return true;
}
if(remainingCapacity<length && !resize(length, errorCode)) {
return false;
}
remainingCapacity-=length;
if(lastCC<=leadCC || leadCC==0) {
if(trailCC<=1) {
reorderStart=limit+length;
} else if(leadCC<=1) {
reorderStart=limit+1; // Ok if not a code point boundary.
}
const char16_t *sLimit=s+length;
do { *limit++=*s++; } while(s!=sLimit);
lastCC=trailCC;
} else {
int32_t i=0;
UChar32 c;
U16_NEXT(s, i, length, c);
insert(c, leadCC); // insert first code point
while(i<length) {
U16_NEXT(s, i, length, c);
if(i<length) {
if (isNFD) {
leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c));
} else {
leadCC = impl.getCC(impl.getNorm16(c));
}
} else {
leadCC=trailCC;
}
append(c, leadCC, errorCode);
}
}
return true;
}
UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
int32_t cpLength=U16_LENGTH(c);
if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
return false;
}
remainingCapacity-=cpLength;
if(cpLength==1) {
*limit++=(char16_t)c;
} else {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
}
lastCC=0;
reorderStart=limit;
return true;
}
UBool ReorderingBuffer::appendZeroCC(const char16_t *s, const char16_t *sLimit, UErrorCode &errorCode) {
if(s==sLimit) {
return true;
}
int32_t length=(int32_t)(sLimit-s);
if(remainingCapacity<length && !resize(length, errorCode)) {
return false;
}
u_memcpy(limit, s, length);
limit+=length;
remainingCapacity-=length;
lastCC=0;
reorderStart=limit;
return true;
}
void ReorderingBuffer::remove() {
reorderStart=limit=start;
remainingCapacity=str.getCapacity();
lastCC=0;
}
void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
if(suffixLength<(limit-start)) {
limit-=suffixLength;
remainingCapacity+=suffixLength;
} else {
limit=start;
remainingCapacity=str.getCapacity();
}
lastCC=0;
reorderStart=limit;
}
UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
int32_t reorderStartIndex=(int32_t)(reorderStart-start);
int32_t length=(int32_t)(limit-start);
str.releaseBuffer(length);
int32_t newCapacity=length+appendLength;
int32_t doubleCapacity=2*str.getCapacity();
if(newCapacity<doubleCapacity) {
newCapacity=doubleCapacity;
}
if(newCapacity<256) {
newCapacity=256;
}
start=str.getBuffer(newCapacity);
if(start==nullptr) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return false;
}
reorderStart=start+reorderStartIndex;
limit=start+length;
remainingCapacity=str.getCapacity()-length;
return true;
}
void ReorderingBuffer::skipPrevious() {
codePointLimit=codePointStart;
char16_t c=*--codePointStart;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
--codePointStart;
}
}
uint8_t ReorderingBuffer::previousCC() {
codePointLimit=codePointStart;
if(reorderStart>=codePointStart) {
return 0;
}
UChar32 c=*--codePointStart;
char16_t c2;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
--codePointStart;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
return impl.getCCFromYesOrMaybeCP(c);
}
// Inserts c somewhere before the last character.
// Requires 0<cc<lastCC which implies reorderStart<limit.
void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
for(setIterator(), skipPrevious(); previousCC()>cc;) {}
// insert c at codePointLimit, after the character with prevCC<=cc
char16_t *q=limit;
char16_t *r=limit+=U16_LENGTH(c);
do {
*--r=*--q;
} while(codePointLimit!=q);
writeCodePoint(q, c);
if(cc<=1) {
reorderStart=r;
}
}
// Normalizer2Impl --------------------------------------------------------- ***
struct CanonIterData : public UMemory {
CanonIterData(UErrorCode &errorCode);
~CanonIterData();
void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
UMutableCPTrie *mutableTrie;
UCPTrie *trie;
UVector canonStartSets; // contains UnicodeSet *
};
Normalizer2Impl::~Normalizer2Impl() {
delete fCanonIterData;
}
void
Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
minDecompNoCP = static_cast<char16_t>(inIndexes[IX_MIN_DECOMP_NO_CP]);
minCompNoMaybeCP = static_cast<char16_t>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
minLcccCP = static_cast<char16_t>(inIndexes[IX_MIN_LCCC_CP]);
minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields
centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1;
normTrie=inTrie;
maybeYesCompositions=inExtraData;
extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
smallFCD=inSmallFCD;
}
U_CDECL_BEGIN
static uint32_t U_CALLCONV
segmentStarterMapper(const void * /*context*/, uint32_t value) {
return value&CANON_NOT_SEGMENT_STARTER;
}
U_CDECL_END
void
Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
UChar32 start = 0, end;
uint32_t norm16;
while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
nullptr, nullptr, &norm16)) >= 0) {
if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
norm16 != Normalizer2Impl::JAMO_VT) {
set.add(start, end);
} else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
uint16_t fcd16 = getFCD16(start);
if (fcd16 > 0xff) { set.add(start, end); }
}
start = end + 1;
}
}
void
Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
// Add the start code point of each same-value range of the trie.
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
nullptr, nullptr, &value)) >= 0) {
sa->add(sa->set, start);
if (start != end && isAlgorithmicNoNo((uint16_t)value) &&
(value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
// Range of code points with same-norm16-value algorithmic decompositions.
// They might have different non-zero FCD16 values.
uint16_t prevFCD16 = getFCD16(start);
while (++start <= end) {
uint16_t fcd16 = getFCD16(start);
if (fcd16 != prevFCD16) {
sa->add(sa->set, start);
prevFCD16 = fcd16;
}
}
}
start = end + 1;
}
/* add Hangul LV syllables and LV+1 because of skippables */
for(char16_t c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
sa->add(sa->set, c);
sa->add(sa->set, c+1);
}
sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
}
void
Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
// Add the start code point of each same-value range of the canonical iterator data trie.
if (!ensureCanonIterData(errorCode)) { return; }
// Currently only used for the SEGMENT_STARTER property.
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
segmentStarterMapper, nullptr, &value)) >= 0) {
sa->add(sa->set, start);
start = end + 1;
}
}
const char16_t *
Normalizer2Impl::copyLowPrefixFromNulTerminated(const char16_t *src,
UChar32 minNeedDataCP,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Make some effort to support NUL-terminated strings reasonably.
// Take the part of the fast quick check loop that does not look up
// data and check the first part of the string.
// After this prefix, determine the string length to simplify the rest
// of the code.
const char16_t *prevSrc=src;
char16_t c;
while((c=*src++)<minNeedDataCP && c!=0) {}
// Back out the last character for full processing.
// Copy this prefix.
if(--src!=prevSrc) {
if(buffer!=nullptr) {
buffer->appendZeroCC(prevSrc, src, errorCode);
}
}
return src;
}
UnicodeString &
Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
dest.setToBogus();
return dest;
}
const char16_t *sArray=src.getBuffer();
if(&dest==&src || sArray==nullptr) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
dest.setToBogus();
return dest;
}
decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
return dest;
}
void
Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
UnicodeString &dest,
int32_t destLengthEstimate,
UErrorCode &errorCode) const {
if(destLengthEstimate<0 && limit!=nullptr) {
destLengthEstimate=(int32_t)(limit-src);
}
dest.remove();
ReorderingBuffer buffer(*this, dest);
if(buffer.init(destLengthEstimate, errorCode)) {
decompose(src, limit, &buffer, errorCode);
}
}
// Dual functionality:
// buffer!=nullptr: normalize
// buffer==nullptr: isNormalized/spanQuickCheckYes
const char16_t *
Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
UChar32 minNoCP=minDecompNoCP;
if(limit==nullptr) {
src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
limit=u_strchr(src, 0);
}
const char16_t *prevSrc;
UChar32 c=0;
uint16_t norm16=0;
// only for quick check
const char16_t *prevBoundary=src;
uint8_t prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=*src)<minNoCP ||
isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else if(!U16_IS_LEAD(c)) {
break;
} else {
char16_t c2;
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(isMostDecompYesAndZeroCC(norm16)) {
src+=2;
} else {
break;
}
} else {
++src; // unpaired lead surrogate: inert
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=nullptr) {
if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
} else {
prevCC=0;
prevBoundary=src;
}
}
if(src==limit) {
break;
}
// Check one above-minimum, relevant code point.
src+=U16_LENGTH(c);
if(buffer!=nullptr) {
if(!decompose(c, norm16, *buffer, errorCode)) {
break;
}
} else {
if(isDecompYes(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if(prevCC<=cc || cc==0) {
prevCC=cc;
if(cc<=1) {
prevBoundary=src;
}
continue;
}
}
return prevBoundary; // "no" or cc out of order
}
}
return src;
}
// Decompose a short piece of text which is likely to contain characters that
// fail the quick check loop and/or where the quick check loop's overhead
// is unlikely to be amortized.
// Called by the compose() and makeFCD() implementations.
const char16_t *
Normalizer2Impl::decomposeShort(const char16_t *src, const char16_t *limit,
UBool stopAtCompBoundary, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
if (U_FAILURE(errorCode)) {
return nullptr;
}
while(src<limit) {
if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
return src;
}
const char16_t *prevSrc = src;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
return prevSrc;
}
if(!decompose(c, norm16, buffer, errorCode)) {
return nullptr;
}
if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return src;
}
}
return src;
}
UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
// get the decomposition and the lead and trail cc's
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
}
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
norm16=getRawNorm16(c);
}
if (norm16 < minYesNo) {
// c does not decompose
return buffer.append(c, 0, errorCode);
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
char16_t jamos[3];
return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
uint8_t leadCC, trailCC;
trailCC=(uint8_t)(firstUnit>>8);
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
leadCC=(uint8_t)(*(mapping-1)>>8);
} else {
leadCC=0;
}
return buffer.append((const char16_t *)mapping+1, length, true, leadCC, trailCC, errorCode);
}
// Dual functionality:
// sink != nullptr: normalize
// sink == nullptr: isNormalized/spanQuickCheckYes
const uint8_t *
Normalizer2Impl::decomposeUTF8(uint32_t options,
const uint8_t *src, const uint8_t *limit,
ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
U_ASSERT(limit != nullptr);
UnicodeString s16;
uint8_t minNoLead = leadByteForCP(minDecompNoCP);
const uint8_t *prevBoundary = src;
// only for quick check
uint8_t prevCC = 0;
for (;;) {
// Fast path: Scan over a sequence of characters below the minimum "no" code point,
// or with (decompYes && ccc==0) properties.
const uint8_t *fastStart = src;
const uint8_t *prevSrc;
uint16_t norm16 = 0;
for (;;) {
if (src == limit) {
if (prevBoundary != limit && sink != nullptr) {
ByteSinkUtil::appendUnchanged(prevBoundary, limit,
*sink, options, edits, errorCode);
}
return src;
}
if (*src < minNoLead) {
++src;
} else {
prevSrc = src;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
if (!isMostDecompYesAndZeroCC(norm16)) {
break;
}
}
}
// isMostDecompYesAndZeroCC(norm16) is false, that is, norm16>=minYesNo,
// and the current character at [prevSrc..src[ is not a common case with cc=0
// (MIN_NORMAL_MAYBE_YES or JAMO_VT).
// It could still be a maybeYes with cc=0.
if (prevSrc != fastStart) {
// The fast path looped over yes/0 characters before the current one.
if (sink != nullptr &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
prevBoundary = prevSrc;
prevCC = 0;
}
// Medium-fast path: Quick check.
if (isMaybeOrNonZeroCC(norm16)) {
// Does not decompose.
uint8_t cc = getCCFromYesOrMaybe(norm16);
if (prevCC <= cc || cc == 0) {
prevCC = cc;
if (cc <= 1) {
if (sink != nullptr &&
!ByteSinkUtil::appendUnchanged(prevBoundary, src,
*sink, options, edits, errorCode)) {
break;
}
prevBoundary = src;
}
continue;
}
}
if (sink == nullptr) {
return prevBoundary; // quick check: "no" or cc out of order
}
// Slow path
// Decompose up to and including the current character.
if (prevBoundary != prevSrc && norm16HasDecompBoundaryBefore(norm16)) {
if (!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
prevBoundary = prevSrc;
}
ReorderingBuffer buffer(*this, s16, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
decomposeShort(prevBoundary, src, STOP_AT_LIMIT, false /* onlyContiguous */,
buffer, errorCode);
// Decompose until the next boundary.
if (buffer.getLastCC() > 1) {
src = decomposeShort(src, limit, STOP_AT_DECOMP_BOUNDARY, false /* onlyContiguous */,
buffer, errorCode);
}
if (U_FAILURE(errorCode)) {
break;
}
if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
break;
}
// We already know there was a change if the original character decomposed;
// otherwise compare.
if (isMaybeOrNonZeroCC(norm16) && buffer.equals(prevBoundary, src)) {
if (!ByteSinkUtil::appendUnchanged(prevBoundary, src,
*sink, options, edits, errorCode)) {
break;
}
} else {
if (!ByteSinkUtil::appendChange(prevBoundary, src, buffer.getStart(), buffer.length(),
*sink, edits, errorCode)) {
break;
}
}
prevBoundary = src;
prevCC = 0;
}
return src;
}
const uint8_t *
Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
StopAt stopAt, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
if (U_FAILURE(errorCode)) {
return nullptr;
}
while (src < limit) {
const uint8_t *prevSrc = src;
uint16_t norm16;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
// Get the decomposition and the lead and trail cc's.
UChar32 c = U_SENTINEL;
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
// No comp boundaries around this character.
uint8_t cc = getCCFromYesOrMaybe(norm16);
if (cc == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
return prevSrc;
}
c = codePointFromValidUTF8(prevSrc, src);
if (!buffer.append(c, cc, errorCode)) {
return nullptr;
}
if (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1) {
return src;
}
continue;
}
// Maps to an isCompYesAndZeroCC.
if (stopAt != STOP_AT_LIMIT) {
return prevSrc;
}
c = codePointFromValidUTF8(prevSrc, src);
c = mapAlgorithmic(c, norm16);
norm16 = getRawNorm16(c);
} else if (stopAt != STOP_AT_LIMIT && norm16 < minNoNoCompNoMaybeCC) {
return prevSrc;
}
// norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
// We do not see invalid UTF-8 here because
// its norm16==INERT is normalization-inert,
// so it gets copied unchanged in the fast path,
// and we stop the slow path where invalid UTF-8 begins.
// c >= 0 is the result of an algorithmic mapping.
U_ASSERT(c >= 0 || norm16 != INERT);
if (norm16 < minYesNo) {
if (c < 0) {
c = codePointFromValidUTF8(prevSrc, src);
}
// does not decompose
if (!buffer.append(c, 0, errorCode)) {
return nullptr;
}
} else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
if (c < 0) {
c = codePointFromValidUTF8(prevSrc, src);
}
char16_t jamos[3];
if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
return nullptr;
}
} else {
// The character decomposes, get everything from the variable-length extra data.
const uint16_t *mapping = getMapping(norm16);
uint16_t firstUnit = *mapping;
int32_t length = firstUnit & MAPPING_LENGTH_MASK;
uint8_t trailCC = (uint8_t)(firstUnit >> 8);
uint8_t leadCC;
if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
leadCC = (uint8_t)(*(mapping-1) >> 8);
} else {
leadCC = 0;
}
if (leadCC == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
return prevSrc;
}
if (!buffer.append((const char16_t *)mapping+1, length, true, leadCC, trailCC, errorCode)) {
return nullptr;
}
}
if ((stopAt == STOP_AT_COMP_BOUNDARY && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) ||
(stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1)) {
return src;
}
}
return src;
}
const char16_t *
Normalizer2Impl::getDecomposition(UChar32 c, char16_t buffer[4], int32_t &length) const {
uint16_t norm16;
if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
// c does not decompose
return nullptr;
}
const char16_t *decomp = nullptr;
if(isDecompNoAlgorithmic(norm16)) {
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
decomp=buffer;
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
// The mapping might decompose further.
norm16 = getRawNorm16(c);
}
if (norm16 < minYesNo) {
return decomp;
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
length=Hangul::decompose(c, buffer);
return buffer;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
length=*mapping&MAPPING_LENGTH_MASK;
return (const char16_t *)mapping+1;
}
// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
// so that a raw mapping fits that consists of one unit ("rm0")
// plus all but the first two code units of the normal mapping.
// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
const char16_t *
Normalizer2Impl::getRawDecomposition(UChar32 c, char16_t buffer[30], int32_t &length) const {
uint16_t norm16;
if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
// c does not decompose
return nullptr;
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
Hangul::getRawDecomposition(c, buffer);
length=2;
return buffer;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
return buffer;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
// Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
// Bit 7=MAPPING_HAS_CCC_LCCC_WORD
const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
uint16_t rm0=*rawMapping;
if(rm0<=MAPPING_LENGTH_MASK) {
length=rm0;
return (const char16_t *)rawMapping-rm0;
} else {
// Copy the normal mapping and replace its first two code units with rm0.
buffer[0]=(char16_t)rm0;
u_memcpy(buffer+1, (const char16_t *)mapping+1+2, mLength-2);
length=mLength-1;
return buffer;
}
} else {
length=mLength;
return (const char16_t *)mapping+1;
}
}
void Normalizer2Impl::decomposeAndAppend(const char16_t *src, const char16_t *limit,
UBool doDecompose,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
buffer.copyReorderableSuffixTo(safeMiddle);
if(doDecompose) {
decompose(src, limit, &buffer, errorCode);
return;
}
// Just merge the strings at the boundary.
bool isFirst = true;
uint8_t firstCC = 0, prevCC = 0, cc;
const char16_t *p = src;
while (p != limit) {
const char16_t *codePointStart = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if ((cc = getCC(norm16)) == 0) {
p = codePointStart;
break;
}
if (isFirst) {
firstCC = cc;
isFirst = false;
}
prevCC = cc;
}
if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
limit=u_strchr(p, 0);
}
if (buffer.append(src, (int32_t)(p - src), false, firstCC, prevCC, errorCode)) {
buffer.appendZeroCC(p, limit, errorCode);
}
}
UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
norm16HasDecompBoundaryBefore(getNorm16(c));
}
UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
if (norm16 < minNoNoCompNoMaybeCC) {
return true;
}
if (norm16 >= limitNoNo) {
return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
// true if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
}
UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
if (c < minDecompNoCP) {
return true;
}
if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
return true;
}
return norm16HasDecompBoundaryAfter(getNorm16(c));
}
UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
if(norm16 <= minYesNo || isHangulLVT(norm16)) {
return true;
}
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
}
// Maps to an isCompYesAndZeroCC.
return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
// decomp after-boundary: same as hasFCDBoundaryAfter(),
// fcd16<=1 || trailCC==0
if(firstUnit>0x1ff) {
return false; // trailCC>1
}
if(firstUnit<=0xff) {
return true; // trailCC==0
}
// if(trailCC==1) test leadCC==0, same as checking for before-boundary
// true if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
}
/*
* Finds the recomposition result for
* a forward-combining "lead" character,
* specified with a pointer to its compositions list,
* and a backward-combining "trail" character.
*
* If the lead and trail characters combine, then this function returns
* the following "compositeAndFwd" value:
* Bits 21..1 composite character
* Bit 0 set if the composite is a forward-combining starter
* otherwise it returns -1.
*
* The compositions list has (trail, compositeAndFwd) pair entries,
* encoded as either pairs or triples of 16-bit units.
* The last entry has the high bit of its first unit set.
*
* The list is sorted by ascending trail characters (there are no duplicates).
* A linear search is used.
*
* See normalizer2impl.h for a more detailed description
* of the compositions list format.
*/
int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
uint16_t key1, firstUnit;
if(trail<COMP_1_TRAIL_LIMIT) {
// trail character is 0..33FF
// result entry may have 2 or 3 units
key1=(uint16_t)(trail<<1);
while(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
}
if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(firstUnit&COMP_1_TRIPLE) {
return ((int32_t)list[1]<<16)|list[2];
} else {
return list[1];
}
}
} else {
// trail character is 3400..10FFFF
// result entry has 3 units
key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
(((trail>>COMP_1_TRAIL_SHIFT))&
~COMP_1_TRIPLE));
uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
uint16_t secondUnit;
for(;;) {
if(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
} else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(key2>(secondUnit=list[1])) {
if(firstUnit&COMP_1_LAST_TUPLE) {
break;
} else {
list+=3;
}
} else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
} else {
break;
}
} else {
break;
}
}
}
return -1;
}
/**
* @param list some character's compositions list
* @param set recursively receives the composites from these compositions
*/
void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
uint16_t firstUnit;
int32_t compositeAndFwd;
do {
firstUnit=*list;
if((firstUnit&COMP_1_TRIPLE)==0) {
compositeAndFwd=list[1];
list+=2;
} else {
compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
list+=3;
}
UChar32 composite=compositeAndFwd>>1;
if((compositeAndFwd&1)!=0) {
addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
}
set.add(composite);
} while((firstUnit&COMP_1_LAST_TUPLE)==0);
}
/*
* Recomposes the buffer text starting at recomposeStartIndex
* (which is in NFD - decomposed and canonically ordered),
* and truncates the buffer contents.
*
* Note that recomposition never lengthens the text:
* Any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit.
*/
void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
UBool onlyContiguous) const {
char16_t *p=buffer.getStart()+recomposeStartIndex;
char16_t *limit=buffer.getLimit();
if(p==limit) {
return;
}
char16_t *starter, *pRemove, *q, *r;
const uint16_t *compositionsList;
UChar32 c, compositeAndFwd;
uint16_t norm16;
uint8_t cc, prevCC;
UBool starterIsSupplementary;
// Some of the following variables are not used until we have a forward-combining starter
// and are only initialized now to avoid compiler warnings.
compositionsList=nullptr; // used as indicator for whether we have a forward-combining starter
starter=nullptr;
starterIsSupplementary=false;
prevCC=0;
for(;;) {
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
cc=getCCFromYesOrMaybe(norm16);
if( // this character combines backward and
isMaybe(norm16) &&
// we have seen a starter that combines forward and
compositionsList!=nullptr &&
// the backward-combining character is not blocked
(prevCC<cc || prevCC==0)
) {
if(isJamoVT(norm16)) {
// c is a Jamo V/T, see if we can compose it with the previous character.
if(c<Hangul::JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
char16_t prev=(char16_t)(*starter-Hangul::JAMO_L_BASE);
if(prev<Hangul::JAMO_L_COUNT) {
pRemove=p-1;
char16_t syllable=(char16_t)
(Hangul::HANGUL_BASE+
(prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
Hangul::JAMO_T_COUNT);
char16_t t;
if(p!=limit && (t=(char16_t)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
++p;
syllable+=t; // The next character was a Jamo T.
}
*starter=syllable;
// remove the Jamo V/T
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
}
/*
* No "else" for Jamo T:
* Since the input is in NFD, there are no Hangul LV syllables that
* a Jamo T could combine with.
* All Jamo Ts are combined above when handling Jamo Vs.
*/
if(p==limit) {
break;
}
compositionsList=nullptr;
continue;
} else if((compositeAndFwd=combine(compositionsList, c))>=0) {
// The starter and the combining mark (c) do combine.
UChar32 composite=compositeAndFwd>>1;
// Replace the starter with the composite, remove the combining mark.
pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
if(starterIsSupplementary) {
if(U_IS_SUPPLEMENTARY(composite)) {
// both are supplementary
starter[0]=U16_LEAD(composite);
starter[1]=U16_TRAIL(composite);
} else {
*starter=(char16_t)composite;
// The composite is shorter than the starter,
// move the intermediate characters forward one.
starterIsSupplementary=false;
q=starter+1;
r=q+1;
while(r<pRemove) {
*q++=*r++;
}
--pRemove;
}
} else if(U_IS_SUPPLEMENTARY(composite)) {
// The composite is longer than the starter,
// move the intermediate characters back one.
starterIsSupplementary=true;
++starter; // temporarily increment for the loop boundary
q=pRemove;
r=++pRemove;
while(starter<q) {
*--r=*--q;
}
*starter=U16_TRAIL(composite);
*--starter=U16_LEAD(composite); // undo the temporary increment
} else {
// both are on the BMP
*starter=(char16_t)composite;
}
/* remove the combining mark by moving the following text over it */
if(pRemove<p) {
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
// Keep prevCC because we removed the combining mark.
if(p==limit) {
break;
}
// Is the composite a starter that combines forward?
if(compositeAndFwd&1) {
compositionsList=
getCompositionsListForComposite(getRawNorm16(composite));
} else {
compositionsList=nullptr;
}
// We combined; continue with looking for compositions.
continue;
}
}
// no combination this time
prevCC=cc;
if(p==limit) {
break;
}
// If c did not combine, then check if it is a starter.
if(cc==0) {
// Found a new starter.
if((compositionsList=getCompositionsListForDecompYes(norm16))!=nullptr) {
// It may combine with something, prepare for it.
if(U_IS_BMP(c)) {
starterIsSupplementary=false;
starter=p-1;
} else {
starterIsSupplementary=true;
starter=p-2;
}
}
} else if(onlyContiguous) {
// FCC: no discontiguous compositions; any intervening character blocks.
compositionsList=nullptr;
}
}
buffer.setReorderingLimit(limit);
}
UChar32
Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
const uint16_t *list;
if(isInert(norm16)) {
return U_SENTINEL;
} else if(norm16<minYesNoMappingsOnly) {
// a combines forward.
if(isJamoL(norm16)) {
b-=Hangul::JAMO_V_BASE;
if(0<=b && b<Hangul::JAMO_V_COUNT) {
return
(Hangul::HANGUL_BASE+
((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
Hangul::JAMO_T_COUNT);
} else {
return U_SENTINEL;
}
} else if(isHangulLV(norm16)) {
b-=Hangul::JAMO_T_BASE;
if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
return a+b;
} else {
return U_SENTINEL;
}
} else {
// 'a' has a compositions list in extraData
list=getMapping(norm16);
if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
list+= // mapping pointer
1+ // +1 to skip the first unit with the mapping length
(*list&MAPPING_LENGTH_MASK); // + mapping length
}
}
} else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
return U_SENTINEL;
} else {
list=getCompositionsListForMaybe(norm16);
}
if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
return U_SENTINEL;
}
#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
return combine(list, b)>>1;
#else
int32_t compositeAndFwd=combine(list, b);
return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
#endif
}
// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
// doCompose: normalize
// !doCompose: isNormalized (buffer must be empty and initialized)
UBool
Normalizer2Impl::compose(const char16_t *src, const char16_t *limit,
UBool onlyContiguous,
UBool doCompose,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
const char16_t *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==nullptr) {
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
doCompose ? &buffer : nullptr,
errorCode);
if(U_FAILURE(errorCode)) {
return false;
}
limit=u_strchr(src, 0);
if (prevBoundary != src) {
if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
prevBoundary = src;
} else {
buffer.removeSuffix(1);
prevBoundary = --src;
}
}
}
for (;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const char16_t *prevSrc;
UChar32 c = 0;
uint16_t norm16 = 0;
for (;;) {
if (src == limit) {
if (prevBoundary != limit && doCompose) {
buffer.appendZeroCC(prevBoundary, limit, errorCode);
}
return true;
}
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else {
prevSrc = src++;
if(!U16_IS_LEAD(c)) {
break;
} else {
char16_t c2;
if(src!=limit && U16_IS_TRAIL(c2=*src)) {
++src;
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
// Medium-fast path: Handle cases that do not require full decomposition and recomposition.
if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
if (!doCompose) {
return false;
}
// Fast path for mapping a character that is immediately surrounded by boundaries.
// In this case, we need not decompose around the current character.
if (isDecompNoAlgorithmic(norm16)) {
// Maps to a single isCompYesAndZeroCC character
// which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 < minNoNoCompBoundaryBefore) {
// The mapping is comp-normalized which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
const char16_t *mapping = reinterpret_cast<const char16_t *>(getMapping(norm16));
int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 >= minNoNoEmpty) {
// The current character maps to nothing.
// Simply omit it from the output if there is a boundary before _or_ after it.
// The character itself implies no boundaries.
if (hasCompBoundaryBefore(src, limit) ||
hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
}
// Other "noNo" type, or need to examine more text around this character:
// Fall through to the slow path.
} else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
char16_t prev=*(prevSrc-1);
if(c<Hangul::JAMO_T_BASE) {
// The current character is a Jamo Vowel,
// compose with previous Jamo L and following Jamo T.
char16_t l = (char16_t)(prev-Hangul::JAMO_L_BASE);
if(l<Hangul::JAMO_L_COUNT) {
if (!doCompose) {
return false;
}
int32_t t;
if (src != limit &&
0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
t < Hangul::JAMO_T_COUNT) {
// The next character is a Jamo T.
++src;
} else if (hasCompBoundaryBefore(src, limit)) {
// No Jamo T follows, not even via decomposition.
t = 0;
} else {
t = -1;
}
if (t >= 0) {
UChar32 syllable = Hangul::HANGUL_BASE +
(l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
Hangul::JAMO_T_COUNT + t;
--prevSrc; // Replace the Jamo L as well.
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.appendBMP((char16_t)syllable, 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T.
// We need to either fully compose that combination here
// (which would complicate the code and may not work with strange custom data)
// or use the slow path.
}
} else if (Hangul::isHangulLV(prev)) {
// The current character is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if (!doCompose) {
return false;
}
UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
--prevSrc; // Replace the Hangul LV as well.
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.appendBMP((char16_t)syllable, 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
// No matching context, or may need to decompose surrounding text first:
// Fall through to the slow path.
} else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
// One or more combining marks that do not combine-back:
// Check for canonical order, copy unchanged if ok and
// if followed by a character with a boundary-before.
uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
// Fails FCD test, need to decompose and contiguously recompose.
if (!doCompose) {
return false;
}
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const char16_t *nextSrc;
uint16_t n16;
for (;;) {
if (src == limit) {
if (doCompose) {
buffer.appendZeroCC(prevBoundary, limit, errorCode);
}
return true;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16);
if (n16 >= MIN_YES_YES_WITH_CC) {
cc = getCCFromNormalYesOrMaybe(n16);
if (prevCC > cc) {
if (!doCompose) {
return false;
}
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
// If there is a boundary here, then we continue with no change.
if (norm16HasCompBoundaryBefore(n16)) {
if (isCompYesAndZeroCC(n16)) {
src = nextSrc;
}
continue;
}
// Use the slow path. There is no boundary in [prevSrc, src[.
}
}
// Slow path: Find the nearest boundaries around the current character,
// decompose and recompose.
if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
const char16_t *p = prevSrc;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16);
if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
prevSrc = p;
}
}
if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
int32_t recomposeStartIndex=buffer.length();
// We know there is not a boundary here.
decomposeShort(prevSrc, src, false /* !stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
// Decompose until the next boundary.
src = decomposeShort(src, limit, true /* stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
return true;
}
recompose(buffer, recomposeStartIndex, onlyContiguous);
if(!doCompose) {
if(!buffer.equals(prevSrc, src)) {
return false;
}
buffer.remove();
}
prevBoundary=src;
}
return true;
}
// Very similar to compose(): Make the same changes in both places if relevant.
// pQCResult==nullptr: spanQuickCheckYes
// pQCResult!=nullptr: quickCheck (*pQCResult must be UNORM_YES)
const char16_t *
Normalizer2Impl::composeQuickCheck(const char16_t *src, const char16_t *limit,
UBool onlyContiguous,
UNormalizationCheckResult *pQCResult) const {
const char16_t *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==nullptr) {
UErrorCode errorCode=U_ZERO_ERROR;
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, nullptr, errorCode);
limit=u_strchr(src, 0);
if (prevBoundary != src) {
if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
prevBoundary = src;
} else {
prevBoundary = --src;
}
}
}
for(;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const char16_t *prevSrc;
UChar32 c = 0;
uint16_t norm16 = 0;
for (;;) {
if(src==limit) {
return src;
}
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else {
prevSrc = src++;
if(!U16_IS_LEAD(c)) {
break;
} else {
char16_t c2;
if(src!=limit && U16_IS_TRAIL(c2=*src)) {
++src;
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
uint16_t prevNorm16 = INERT;
if (prevBoundary != prevSrc) {
if (norm16HasCompBoundaryBefore(norm16)) {
prevBoundary = prevSrc;
} else {
const char16_t *p = prevSrc;
uint16_t n16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16);
if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
prevBoundary = prevSrc;
} else {
prevBoundary = p;
prevNorm16 = n16;
}
}
}
if(isMaybeOrNonZeroCC(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if (onlyContiguous /* FCC */ && cc != 0 &&
getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
// The [prevBoundary..prevSrc[ character
// passed the quick check "yes && ccc==0" test
// but is out of canonical order with the current combining mark.
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const char16_t *nextSrc;
for (;;) {
if (norm16 < MIN_YES_YES_WITH_CC) {
if (pQCResult != nullptr) {
*pQCResult = UNORM_MAYBE;
} else {
return prevBoundary;
}
}
if (src == limit) {
return src;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16);
if (isMaybeOrNonZeroCC(norm16)) {
cc = getCCFromYesOrMaybe(norm16);
if (!(prevCC <= cc || cc == 0)) {
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
if (isCompYesAndZeroCC(norm16)) {
prevBoundary = src;
src = nextSrc;
continue;
}
}
}
if(pQCResult!=nullptr) {
*pQCResult=UNORM_NO;
}
return prevBoundary;
}
}
void Normalizer2Impl::composeAndAppend(const char16_t *src, const char16_t *limit,
UBool doCompose,
UBool onlyContiguous,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const char16_t *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
if(src!=firstStarterInSrc) {
const char16_t *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
buffer.getLimit(), onlyContiguous);
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
UnicodeString middle(lastStarterInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstStarterInSrc-src));
const char16_t *middleStart=middle.getBuffer();
compose(middleStart, middleStart+middle.length(), onlyContiguous,
true, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstStarterInSrc;
}
}
if(doCompose) {
compose(src, limit, onlyContiguous, true, buffer, errorCode);
} else {
if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
UBool
Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
const uint8_t *src, const uint8_t *limit,
ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
U_ASSERT(limit != nullptr);
UnicodeString s16;
uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
const uint8_t *prevBoundary = src;
for (;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const uint8_t *prevSrc;
uint16_t norm16 = 0;
for (;;) {
if (src == limit) {
if (prevBoundary != limit && sink != nullptr) {
ByteSinkUtil::appendUnchanged(prevBoundary, limit,
*sink, options, edits, errorCode);
}
return true;
}
if (*src < minNoMaybeLead) {
++src;
} else {
prevSrc = src;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
if (!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
// Medium-fast path: Handle cases that do not require full decomposition and recomposition.
if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
if (sink == nullptr) {
return false;
}
// Fast path for mapping a character that is immediately surrounded by boundaries.
// In this case, we need not decompose around the current character.
if (isDecompNoAlgorithmic(norm16)) {
// Maps to a single isCompYesAndZeroCC character
// which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
prevBoundary = src;
continue;
}
} else if (norm16 < minNoNoCompBoundaryBefore) {
// The mapping is comp-normalized which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
const uint16_t *mapping = getMapping(norm16);
int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
if (!ByteSinkUtil::appendChange(prevSrc, src, (const char16_t *)mapping, length,
*sink, edits, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 >= minNoNoEmpty) {
// The current character maps to nothing.
// Simply omit it from the output if there is a boundary before _or_ after it.
// The character itself implies no boundaries.
if (hasCompBoundaryBefore(src, limit) ||
hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
if (edits != nullptr) {
edits->addReplace((int32_t)(src - prevSrc), 0);
}
prevBoundary = src;
continue;
}
}
// Other "noNo" type, or need to examine more text around this character:
// Fall through to the slow path.
} else if (isJamoVT(norm16)) {
// Jamo L: E1 84 80..92
// Jamo V: E1 85 A1..B5
// Jamo T: E1 86 A8..E1 87 82
U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1);
UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
if (prevSrc[1] == 0x85) {
// The current character is a Jamo Vowel,
// compose with previous Jamo L and following Jamo T.
UChar32 l = prev - Hangul::JAMO_L_BASE;
if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
if (sink == nullptr) {
return false;
}
int32_t t = getJamoTMinusBase(src, limit);
if (t >= 0) {
// The next character is a Jamo T.
src += 3;
} else if (hasCompBoundaryBefore(src, limit)) {
// No Jamo T follows, not even via decomposition.
t = 0;
}
if (t >= 0) {
UChar32 syllable = Hangul::HANGUL_BASE +
(l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
Hangul::JAMO_T_COUNT + t;
prevSrc -= 3; // Replace the Jamo L as well.
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
prevBoundary = src;
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T.
// We need to either fully compose that combination here
// (which would complicate the code and may not work with strange custom data)
// or use the slow path.
}
} else if (Hangul::isHangulLV(prev)) {
// The current character is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if (sink == nullptr) {
return false;
}
UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
prevSrc -= 3; // Replace the Hangul LV as well.
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
prevBoundary = src;
continue;
}
// No matching context, or may need to decompose surrounding text first:
// Fall through to the slow path.
} else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
// One or more combining marks that do not combine-back:
// Check for canonical order, copy unchanged if ok and
// if followed by a character with a boundary-before.
uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
// Fails FCD test, need to decompose and contiguously recompose.
if (sink == nullptr) {
return false;
}
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const uint8_t *nextSrc;
uint16_t n16;
for (;;) {
if (src == limit) {
if (sink != nullptr) {
ByteSinkUtil::appendUnchanged(prevBoundary, limit,
*sink, options, edits, errorCode);
}
return true;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16);
if (n16 >= MIN_YES_YES_WITH_CC) {
cc = getCCFromNormalYesOrMaybe(n16);
if (prevCC > cc) {
if (sink == nullptr) {
return false;
}
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
// If there is a boundary here, then we continue with no change.
if (norm16HasCompBoundaryBefore(n16)) {
if (isCompYesAndZeroCC(n16)) {
src = nextSrc;
}
continue;
}
// Use the slow path. There is no boundary in [prevSrc, src[.
}
}
// Slow path: Find the nearest boundaries around the current character,
// decompose and recompose.
if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
const uint8_t *p = prevSrc;
UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16);
if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
prevSrc = p;
}
}
ReorderingBuffer buffer(*this, s16, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
// We know there is not a boundary here.
decomposeShort(prevSrc, src, STOP_AT_LIMIT, onlyContiguous,
buffer, errorCode);
// Decompose until the next boundary.
src = decomposeShort(src, limit, STOP_AT_COMP_BOUNDARY, onlyContiguous,
buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
return true;
}
recompose(buffer, 0, onlyContiguous);
if (!buffer.equals(prevSrc, src)) {
if (sink == nullptr) {
return false;
}
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
*sink, edits, errorCode)) {
break;
}
prevBoundary = src;
}
}
return true;
}
UBool Normalizer2Impl::hasCompBoundaryBefore(const char16_t *src, const char16_t *limit) const {
if (src == limit || *src < minCompNoMaybeCP) {
return true;
}
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
return norm16HasCompBoundaryBefore(norm16);
}
UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
if (src == limit) {
return true;
}
uint16_t norm16;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
return norm16HasCompBoundaryBefore(norm16);
}
UBool Normalizer2Impl::hasCompBoundaryAfter(const char16_t *start, const char16_t *p,
UBool onlyContiguous) const {
if (start == p) {
return true;
}
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
}
UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
UBool onlyContiguous) const {
if (start == p) {
return true;
}
uint16_t norm16;
UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16);
return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
}
const char16_t *Normalizer2Impl::findPreviousCompBoundary(const char16_t *start, const char16_t *p,
UBool onlyContiguous) const {
while (p != start) {
const char16_t *codePointLimit = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return codePointLimit;
}
if (hasCompBoundaryBefore(c, norm16)) {
return p;
}
}
return p;
}
const char16_t *Normalizer2Impl::findNextCompBoundary(const char16_t *p, const char16_t *limit,
UBool onlyContiguous) const {
while (p != limit) {
const char16_t *codePointStart = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if (hasCompBoundaryBefore(c, norm16)) {
return codePointStart;
}
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return p;
}
}
return p;
}
uint8_t Normalizer2Impl::getPreviousTrailCC(const char16_t *start, const char16_t *p) const {
if (start == p) {
return 0;
}
int32_t i = (int32_t)(p - start);
UChar32 c;
U16_PREV(start, 0, i, c);
return (uint8_t)getFCD16(c);
}
uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
if (start == p) {
return 0;
}
int32_t i = (int32_t)(p - start);
UChar32 c;
U8_PREV(start, 0, i, c);
return (uint8_t)getFCD16(c);
}
// Note: normalizer2impl.cpp r30982 (2011-nov-27)
// still had getFCDTrie() which built and cached an FCD trie.
// That provided faster access to FCD data than getFCD16FromNormData()
// but required synchronization and consumed some 10kB of heap memory
// in any process that uses FCD (e.g., via collation).
// minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
// at least for ASCII & CJK.
// Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this
// function on Windows ARM64. As a work-around, we disable optimizations for this function.
// This work-around could/should be removed once the following versions of Visual Studio are no
// longer supported: All versions of VS2017, and versions of VS2019 below 16.4.
#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
#pragma optimize( "", off )
#endif
// Gets the FCD value from the regular normalization data.
uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
uint16_t norm16=getNorm16(c);
if (norm16 >= limitNoNo) {
if(norm16>=MIN_NORMAL_MAYBE_YES) {
// combining mark
norm16=getCCFromNormalYesOrMaybe(norm16);
return norm16|(norm16<<8);
} else if(norm16>=minMaybeYes) {
return 0;
} else { // isDecompNoAlgorithmic(norm16)
uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
if (deltaTrailCC <= DELTA_TCCC_1) {
return deltaTrailCC >> OFFSET_SHIFT;
}
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
norm16=getRawNorm16(c);
}
}
if(norm16<=minYesNo || isHangulLVT(norm16)) {
// no decomposition or Hangul syllable, all zeros
return 0;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
norm16=firstUnit>>8; // tccc
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
norm16|=*(mapping-1)&0xff00; // lccc
}
return norm16;
}
#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
#pragma optimize( "", on )
#endif
// Dual functionality:
// buffer!=nullptr: normalize
// buffer==nullptr: isNormalized/quickCheck/spanQuickCheckYes
const char16_t *
Normalizer2Impl::makeFCD(const char16_t *src, const char16_t *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
// Similar to the prevBoundary in the compose() implementation.
const char16_t *prevBoundary=src;
int32_t prevFCD16=0;
if(limit==nullptr) {
src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
if(prevBoundary<src) {
prevBoundary=src;
// We know that the previous character's lccc==0.
// Fetching the fcd16 value was deferred for this below-U+0300 code point.
prevFCD16=getFCD16(*(src-1));
if(prevFCD16>1) {
--prevBoundary;
}
}
limit=u_strchr(src, 0);
}
// Note: In this function we use buffer->appendZeroCC() because we track
// the lead and trail combining classes here, rather than leaving it to
// the ReorderingBuffer.
// The exception is the call to decomposeShort() which uses the buffer
// in the normal way.
const char16_t *prevSrc;
UChar32 c=0;
uint16_t fcd16=0;
for(;;) {
// count code units with lccc==0
for(prevSrc=src; src!=limit;) {
if((c=*src)<minLcccCP) {
prevFCD16=~c;
++src;
} else if(!singleLeadMightHaveNonZeroFCD16(c)) {
prevFCD16=0;
++src;
} else {
if(U16_IS_LEAD(c)) {
char16_t c2;
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
}
if((fcd16=getFCD16FromNormData(c))<=0xff) {
prevFCD16=fcd16;
src+=U16_LENGTH(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=nullptr && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
if(src==limit) {
break;
}
prevBoundary=src;
// We know that the previous character's lccc==0.
if(prevFCD16<0) {
// Fetching the fcd16 value was deferred for this below-minLcccCP code point.
UChar32 prev=~prevFCD16;
if(prev<minDecompNoCP) {
prevFCD16=0;
} else {
prevFCD16=getFCD16FromNormData(prev);
if(prevFCD16>1) {
--prevBoundary;
}
}
} else {
const char16_t *p=src-1;
if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
--p;
// Need to fetch the previous character's FCD value because
// prevFCD16 was just for the trail surrogate code point.
prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
// Still known to have lccc==0 because its lead surrogate unit had lccc==0.
}
if(prevFCD16>1) {
prevBoundary=p;
}
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=U16_LENGTH(c);
// The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
// Check for proper order, and decompose locally if necessary.
if((prevFCD16&0xff)<=(fcd16>>8)) {
// proper order: prev tccc <= current lccc
if((fcd16&0xff)<=1) {
prevBoundary=src;
}
if(buffer!=nullptr && !buffer->appendZeroCC(c, errorCode)) {
break;
}
prevFCD16=fcd16;
continue;
} else if(buffer==nullptr) {
return prevBoundary; // quick check "no"
} else {
/*
* Back out the part of the source that we copied or appended
* already but is now going to be decomposed.
* prevSrc is set to after what was copied/appended.
*/
buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
/*
* Find the part of the source that needs to be decomposed,
* up to the next safe boundary.
*/
src=findNextFCDBoundary(src, limit);
/*
* The source text does not fulfill the conditions for FCD.
* Decompose and reorder a limited piece of the text.
*/
decomposeShort(prevBoundary, src, false, false, *buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
prevBoundary=src;
prevFCD16=0;
}
}
return src;
}
void Normalizer2Impl::makeFCDAndAppend(const char16_t *src, const char16_t *limit,
UBool doMakeFCD,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const char16_t *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
if(src!=firstBoundaryInSrc) {
const char16_t *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
buffer.getLimit());
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
UnicodeString middle(lastBoundaryInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstBoundaryInSrc-src));
const char16_t *middleStart=middle.getBuffer();
makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstBoundaryInSrc;
}
}
if(doMakeFCD) {
makeFCD(src, limit, &buffer, errorCode);
} else {
if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
const char16_t *Normalizer2Impl::findPreviousFCDBoundary(const char16_t *start, const char16_t *p) const {
while(start<p) {
const char16_t *codePointLimit = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
return codePointLimit;
}
if (norm16HasDecompBoundaryBefore(norm16)) {
return p;
}
}
return p;
}
const char16_t *Normalizer2Impl::findNextFCDBoundary(const char16_t *p, const char16_t *limit) const {
while(p<limit) {
const char16_t *codePointStart=p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
return codePointStart;
}
if (norm16HasDecompBoundaryAfter(norm16)) {
return p;
}
}
return p;
}
// CanonicalIterator data -------------------------------------------------- ***
CanonIterData::CanonIterData(UErrorCode &errorCode) :
mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr),
canonStartSets(uprv_deleteUObject, nullptr, errorCode) {}
CanonIterData::~CanonIterData() {
umutablecptrie_close(mutableTrie);
ucptrie_close(trie);
}
void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead);
if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
// origin is the first character whose decomposition starts with
// the character for which we are setting the value.
umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode);
} else {
// origin is not the first character, or it is U+0000.
UnicodeSet *set;
if((canonValue&CANON_HAS_SET)==0) {
LocalPointer<UnicodeSet> lpSet(new UnicodeSet, errorCode);
set=lpSet.getAlias();
if(U_FAILURE(errorCode)) {
return;
}
UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode);
canonStartSets.adoptElement(lpSet.orphan(), errorCode);
if (U_FAILURE(errorCode)) {
return;
}
if(firstOrigin!=0) {
set->add(firstOrigin);
}
} else {
set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
}
set->add(origin);
}
}
// C++ class for friend access to private Normalizer2Impl members.
class InitCanonIterData {
public:
static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
};
U_CDECL_BEGIN
// UInitOnce instantiation function for CanonIterData
static void U_CALLCONV
initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
InitCanonIterData::doInit(impl, errorCode);
}
U_CDECL_END
void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
U_ASSERT(impl->fCanonIterData == nullptr);
impl->fCanonIterData = new CanonIterData(errorCode);
if (impl->fCanonIterData == nullptr) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
}
if (U_SUCCESS(errorCode)) {
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(impl->normTrie, start,
UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
nullptr, nullptr, &value)) >= 0) {
// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
if (value != Normalizer2Impl::INERT) {
impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
}
start = end + 1;
}
#ifdef UCPTRIE_DEBUG
umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
#endif
impl->fCanonIterData->trie = umutablecptrie_buildImmutable(
impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
umutablecptrie_close(impl->fCanonIterData->mutableTrie);
impl->fCanonIterData->mutableTrie = nullptr;
}
if (U_FAILURE(errorCode)) {
delete impl->fCanonIterData;
impl->fCanonIterData = nullptr;
}
}
void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
CanonIterData &newData,
UErrorCode &errorCode) const {
if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
// Inert, or 2-way mapping (including Hangul syllable).
// We do not write a canonStartSet for any yesNo character.
// Composites from 2-way mappings are added at runtime from the
// starter's compositions list, and the other characters in
// 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
// "maybe" characters.
return;
}
for(UChar32 c=start; c<=end; ++c) {
uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c);
uint32_t newValue=oldValue;
if(isMaybeOrNonZeroCC(norm16)) {
// not a segment starter if it occurs in a decomposition or has cc!=0
newValue|=CANON_NOT_SEGMENT_STARTER;
if(norm16<MIN_NORMAL_MAYBE_YES) {
newValue|=CANON_HAS_COMPOSITIONS;
}
} else if(norm16<minYesNo) {
newValue|=CANON_HAS_COMPOSITIONS;
} else {
// c has a one-way decomposition
UChar32 c2=c;
// Do not modify the whole-range norm16 value.
uint16_t norm16_2=norm16;
if (isDecompNoAlgorithmic(norm16_2)) {
// Maps to an isCompYesAndZeroCC.
c2 = mapAlgorithmic(c2, norm16_2);
norm16_2 = getRawNorm16(c2);
// No compatibility mappings for the CanonicalIterator.
U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)));
}
if (norm16_2 > minYesNo) {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16_2);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
if(c==c2 && (*(mapping-1)&0xff)!=0) {
newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
}
}
// Skip empty mappings (no characters in the decomposition).
if(length!=0) {
++mapping; // skip over the firstUnit
// add c to first code point's start set
int32_t i=0;
U16_NEXT_UNSAFE(mapping, i, c2);
newData.addToStartSet(c, c2, errorCode);
// Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
// one-way mapping. A 2-way mapping is possible here after
// intermediate algorithmic mapping.
if(norm16_2>=minNoNo) {
while(i<length) {
U16_NEXT_UNSAFE(mapping, i, c2);
uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2);
if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
umutablecptrie_set(newData.mutableTrie, c2,
c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode);
}
}
}
}
} else {
// c decomposed to c2 algorithmically; c has cc==0
newData.addToStartSet(c, c2, errorCode);
}
}
if(newValue!=oldValue) {
umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode);
}
}
}
UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
// Logically const: Synchronized instantiation.
Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
return U_SUCCESS(errorCode);
}
int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
return (int32_t)ucptrie_get(fCanonIterData->trie, c);
}
const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
}
UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
return getCanonValue(c)>=0;
}
UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
if(canonValue==0) {
return false;
}
set.clear();
int32_t value=canonValue&CANON_VALUE_MASK;
if((canonValue&CANON_HAS_SET)!=0) {
set.addAll(getCanonStartSet(value));
} else if(value!=0) {
set.add(value);
}
if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
uint16_t norm16=getRawNorm16(c);
if(norm16==JAMO_L) {
UChar32 syllable=
(UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
} else {
addComposites(getCompositionsList(norm16), set);
}
}
return true;
}
U_NAMESPACE_END
// Normalizer2 data swapping ----------------------------------------------- ***
U_NAMESPACE_USE
U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
int32_t headerSize;
const uint8_t *inBytes;
uint8_t *outBytes;
const int32_t *inIndexes;
int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
int32_t i, offset, nextOffset, size;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==nullptr || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
uint8_t formatVersion0=pInfo->formatVersion[0];
if(!(
pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
pInfo->dataFormat[1]==0x72 &&
pInfo->dataFormat[2]==0x6d &&
pInfo->dataFormat[3]==0x32 &&
(1<=formatVersion0 && formatVersion0<=4)
)) {
udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
inBytes=(const uint8_t *)inData+headerSize;
outBytes=(outData == nullptr) ? nullptr : (uint8_t *)outData+headerSize;
inIndexes=(const int32_t *)inBytes;
int32_t minIndexesLength;
if(formatVersion0==1) {
minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
} else if(formatVersion0==2) {
minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
} else {
minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
}
if(length>=0) {
length-=headerSize;
if(length<minIndexesLength*4) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
/* read the first few indexes */
for(i=0; i<UPRV_LENGTHOF(indexes); ++i) {
indexes[i]=udata_readInt32(ds, inIndexes[i]);
}
/* get the total length of the data */
size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
if(length>=0) {
if(length<size) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/* copy the data for inaccessible bytes */
if(inBytes!=outBytes) {
uprv_memcpy(outBytes, inBytes, size);
}
offset=0;
/* swap the int32_t indexes[] */
nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
offset=nextOffset;
/* swap the trie */
nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
utrie_swapAnyVersion(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* swap the uint16_t extraData[] */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
offset=nextOffset;
U_ASSERT(offset==size);
}
return headerSize+size;
}
#endif // !UCONFIG_NO_NORMALIZATION