Files
tubestation/memory/replace/logalloc/replay/Replay.cpp
Mike Hommey 8df4ff9d68 Bug 1399350 - Remove jemalloc_*_impl macros. r=njn
Those macros are one more thing that needs to be added when the
mozjemalloc API surface is increased, but after bug 1399350, nothing
actually needs them, so remove them.
2017-09-13 14:25:21 +09:00

560 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define MOZ_MEMORY_IMPL
#include "mozmemory_wrap.h"
#ifdef _WIN32
#include <windows.h>
#include <io.h>
typedef int ssize_t;
#else
#include <sys/mman.h>
#include <unistd.h>
#endif
#include <algorithm>
#include <cstdio>
#include <cstring>
#include "mozilla/Assertions.h"
#include "FdPrintf.h"
static void
die(const char* message)
{
/* Here, it doesn't matter that fprintf may allocate memory. */
fprintf(stderr, "%s\n", message);
exit(1);
}
/* We don't want to be using malloc() to allocate our internal tracking
* data, because that would change the parameters of what is being measured,
* so we want to use data types that directly use mmap/VirtualAlloc. */
template <typename T, size_t Len>
class MappedArray
{
public:
MappedArray(): mPtr(nullptr) {}
~MappedArray()
{
if (mPtr) {
#ifdef _WIN32
VirtualFree(mPtr, sizeof(T) * Len, MEM_RELEASE);
#else
munmap(mPtr, sizeof(T) * Len);
#endif
}
}
T& operator[] (size_t aIndex) const
{
if (mPtr) {
return mPtr[aIndex];
}
#ifdef _WIN32
mPtr = reinterpret_cast<T*>(VirtualAlloc(nullptr, sizeof(T) * Len,
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE));
if (mPtr == nullptr) {
die("VirtualAlloc error");
}
#else
mPtr = reinterpret_cast<T*>(mmap(nullptr, sizeof(T) * Len,
PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0));
if (mPtr == MAP_FAILED) {
die("Mmap error");
}
#endif
return mPtr[aIndex];
}
private:
mutable T* mPtr;
};
/* Type for records of allocations. */
struct MemSlot
{
void* mPtr;
size_t mSize;
};
/* An almost infinite list of slots.
* In essence, this is a linked list of arrays of groups of slots.
* Each group is 1MB. On 64-bits, one group allows to store 64k allocations.
* Each MemSlotList instance can store 1023 such groups, which means more
* than 65M allocations. In case more would be needed, we chain to another
* MemSlotList, and so on.
* Using 1023 groups makes the MemSlotList itself page sized on 32-bits
* and 2 pages-sized on 64-bits.
*/
class MemSlotList
{
static const size_t kGroups = 1024 - 1;
static const size_t kGroupSize = (1024 * 1024) / sizeof(MemSlot);
MappedArray<MemSlot, kGroupSize> mSlots[kGroups];
MappedArray<MemSlotList, 1> mNext;
public:
MemSlot& operator[] (size_t aIndex) const
{
if (aIndex < kGroupSize * kGroups) {
return mSlots[aIndex / kGroupSize][aIndex % kGroupSize];
}
aIndex -= kGroupSize * kGroups;
return mNext[0][aIndex];
}
};
/* Helper class for memory buffers */
class Buffer
{
public:
Buffer() : mBuf(nullptr), mLength(0) {}
Buffer(const void* aBuf, size_t aLength)
: mBuf(reinterpret_cast<const char*>(aBuf)), mLength(aLength)
{}
/* Constructor for string literals. */
template <size_t Size>
explicit Buffer(const char (&aStr)[Size])
: mBuf(aStr), mLength(Size - 1)
{}
/* Returns a sub-buffer up-to but not including the given aNeedle character.
* The "parent" buffer itself is altered to begin after the aNeedle
* character.
* If the aNeedle character is not found, return the entire buffer, and empty
* the "parent" buffer. */
Buffer SplitChar(char aNeedle)
{
char* buf = const_cast<char*>(mBuf);
char* c = reinterpret_cast<char*>(memchr(buf, aNeedle, mLength));
if (!c) {
return Split(mLength);
}
Buffer result = Split(c - buf);
// Remove the aNeedle character itself.
Split(1);
return result;
}
/* Returns a sub-buffer of at most aLength characters. The "parent" buffer is
* amputated of those aLength characters. If the "parent" buffer is smaller
* than aLength, then its length is used instead. */
Buffer Split(size_t aLength)
{
Buffer result(mBuf, std::min(aLength, mLength));
mLength -= result.mLength;
mBuf += result.mLength;
return result;
}
/* Move the buffer (including its content) to the memory address of the aOther
* buffer. */
void Slide(Buffer aOther)
{
memmove(const_cast<char*>(aOther.mBuf), mBuf, mLength);
mBuf = aOther.mBuf;
}
/* Returns whether the two involved buffers have the same content. */
bool operator ==(Buffer aOther)
{
return mLength == aOther.mLength && (mBuf == aOther.mBuf ||
!strncmp(mBuf, aOther.mBuf, mLength));
}
/* Returns whether the buffer is empty. */
explicit operator bool() { return mLength; }
/* Returns the memory location of the buffer. */
const char* get() { return mBuf; }
/* Returns the memory location of the end of the buffer (technically, the
* first byte after the buffer). */
const char* GetEnd() { return mBuf + mLength; }
/* Extend the buffer over the content of the other buffer, assuming it is
* adjacent. */
void Extend(Buffer aOther)
{
MOZ_ASSERT(aOther.mBuf == GetEnd());
mLength += aOther.mLength;
}
private:
const char* mBuf;
size_t mLength;
};
/* Helper class to read from a file descriptor line by line. */
class FdReader {
public:
explicit FdReader(int aFd)
: mFd(aFd)
, mData(&mRawBuf, 0)
, mBuf(&mRawBuf, sizeof(mRawBuf))
{}
/* Read a line from the file descriptor and returns it as a Buffer instance */
Buffer ReadLine()
{
while (true) {
Buffer result = mData.SplitChar('\n');
/* There are essentially three different cases here:
* - '\n' was found "early". In this case, the end of the result buffer
* is before the beginning of the mData buffer (since SplitChar
* amputated it).
* - '\n' was found as the last character of mData. In this case, mData
* is empty, but still points at the end of mBuf. result points to what
* used to be in mData, without the last character.
* - '\n' was not found. In this case too, mData is empty and points at
* the end of mBuf. But result points to the entire buffer that used to
* be pointed by mData.
* Only in the latter case do both result and mData's end match, and it's
* the only case where we need to refill the buffer.
*/
if (result.GetEnd() != mData.GetEnd()) {
return result;
}
/* Since SplitChar emptied mData, make it point to what it had before. */
mData = result;
/* And move it to the beginning of the read buffer. */
mData.Slide(mBuf);
FillBuffer();
if (!mData) {
return Buffer();
}
}
}
private:
/* Fill the read buffer. */
void FillBuffer()
{
size_t size = mBuf.GetEnd() - mData.GetEnd();
Buffer remainder(mData.GetEnd(), size);
ssize_t len = 1;
while (remainder && len > 0) {
len = ::read(mFd, const_cast<char*>(remainder.get()), size);
if (len < 0) {
die("Read error");
}
size -= len;
mData.Extend(remainder.Split(len));
}
}
/* File descriptor to read from. */
int mFd;
/* Part of data that was read from the file descriptor but not returned with
* ReadLine yet. */
Buffer mData;
/* Buffer representation of mRawBuf */
Buffer mBuf;
/* read() buffer */
char mRawBuf[4096];
};
MOZ_BEGIN_EXTERN_C
/* Function declarations for all the replace_malloc _impl functions.
* See memory/build/replace_malloc.c */
#define MALLOC_DECL(name, return_type, ...) \
return_type name ## _impl(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"
#define MALLOC_DECL(name, return_type, ...) \
return_type name(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_JEMALLOC
#include "malloc_decls.h"
/* mozjemalloc relies on DllMain to initialize, but DllMain is not invoked
* for executables, so manually invoke mozjemalloc initialization. */
#if defined(_WIN32)
void malloc_init_hard(void);
#endif
#ifdef ANDROID
/* mozjemalloc uses MozTagAnonymousMemory, which doesn't have an inline
* implementation on Android */
void
MozTagAnonymousMemory(const void* aPtr, size_t aLength, const char* aTag) {}
/* mozjemalloc and jemalloc use pthread_atfork, which Android doesn't have.
* While gecko has one in libmozglue, the replay program can't use that.
* Since we're not going to fork anyways, make it a dummy function. */
int
pthread_atfork(void (*aPrepare)(void), void (*aParent)(void),
void (*aChild)(void))
{
return 0;
}
#endif
MOZ_END_EXTERN_C
size_t parseNumber(Buffer aBuf)
{
if (!aBuf) {
die("Malformed input");
}
size_t result = 0;
for (const char* c = aBuf.get(), *end = aBuf.GetEnd(); c < end; c++) {
if (*c < '0' || *c > '9') {
die("Malformed input");
}
result *= 10;
result += *c - '0';
}
return result;
}
/* Class to handle dispatching the replay function calls to replace-malloc. */
class Replay
{
public:
Replay(): mOps(0) {
#ifdef _WIN32
// See comment in FdPrintf.h as to why native win32 handles are used.
mStdErr = reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE));
#else
mStdErr = fileno(stderr);
#endif
}
MemSlot& operator[] (size_t index) const
{
return mSlots[index];
}
void malloc(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::malloc_impl(size);
aSlot.mSize = size;
Commit(aSlot);
}
void posix_memalign(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
void* ptr;
if (::posix_memalign_impl(&ptr, alignment, size) == 0) {
aSlot.mPtr = ptr;
aSlot.mSize = size;
} else {
aSlot.mPtr = nullptr;
aSlot.mSize = 0;
}
Commit(aSlot);
}
void aligned_alloc(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::aligned_alloc_impl(alignment, size);
aSlot.mSize = size;
Commit(aSlot);
}
void calloc(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t num = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::calloc_impl(num, size);
aSlot.mSize = size * num;
Commit(aSlot);
}
void realloc(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
MemSlot& old_slot = (*this)[slot_id];
void* old_ptr = old_slot.mPtr;
old_slot.mPtr = nullptr;
old_slot.mSize = 0;
aSlot.mPtr = ::realloc_impl(old_ptr, size);
aSlot.mSize = size;
Commit(aSlot);
}
void free(Buffer& aArgs)
{
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs);
MemSlot& slot = (*this)[slot_id];
::free_impl(slot.mPtr);
slot.mPtr = nullptr;
slot.mSize = 0;
}
void memalign(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::memalign_impl(alignment, size);
aSlot.mSize = size;
Commit(aSlot);
}
void valloc(MemSlot& aSlot, Buffer& aArgs)
{
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::valloc_impl(size);
aSlot.mSize = size;
Commit(aSlot);
}
void jemalloc_stats(Buffer& aArgs)
{
if (aArgs) {
die("Malformed input");
}
jemalloc_stats_t stats;
::jemalloc_stats(&stats);
FdPrintf(mStdErr,
"#%zu mapped: %zu; allocated: %zu; waste: %zu; dirty: %zu; "
"bookkeep: %zu; binunused: %zu\n", mOps, stats.mapped,
stats.allocated, stats.waste, stats.page_cache,
stats.bookkeeping, stats.bin_unused);
/* TODO: Add more data, like actual RSS as measured by OS, but compensated
* for the replay internal data. */
}
private:
void Commit(MemSlot& aSlot)
{
memset(aSlot.mPtr, 0x5a, aSlot.mSize);
}
intptr_t mStdErr;
size_t mOps;
MemSlotList mSlots;
};
int
main()
{
size_t first_pid = 0;
FdReader reader(0);
Replay replay;
#if defined(_WIN32)
malloc_init_hard();
#endif
/* Read log from stdin and dispatch function calls to the Replay instance.
* The log format is essentially:
* <pid> <function>([<args>])[=<result>]
* <args> is a comma separated list of arguments.
*
* The logs are expected to be preprocessed so that allocations are
* attributed a tracking slot. The input is trusted not to have crazy
* values for these slot numbers.
*
* <result>, as well as some of the args to some of the function calls are
* such slot numbers.
*/
while (true) {
Buffer line = reader.ReadLine();
if (!line) {
break;
}
size_t pid = parseNumber(line.SplitChar(' '));
if (!first_pid) {
first_pid = pid;
}
/* The log may contain data for several processes, only entries for the
* very first that appears are treated. */
if (first_pid != pid) {
continue;
}
/* The log contains thread ids for manual analysis, but we just ignore them
* for now. */
parseNumber(line.SplitChar(' '));
Buffer func = line.SplitChar('(');
Buffer args = line.SplitChar(')');
/* jemalloc_stats and free are functions with no result. */
if (func == Buffer("jemalloc_stats")) {
replay.jemalloc_stats(args);
continue;
}
if (func == Buffer("free")) {
replay.free(args);
continue;
}
/* Parse result value and get the corresponding slot. */
Buffer dummy = line.SplitChar('=');
Buffer dummy2 = line.SplitChar('#');
if (dummy || dummy2) {
die("Malformed input");
}
size_t slot_id = parseNumber(line);
MemSlot& slot = replay[slot_id];
if (func == Buffer("malloc")) {
replay.malloc(slot, args);
} else if (func == Buffer("posix_memalign")) {
replay.posix_memalign(slot, args);
} else if (func == Buffer("aligned_alloc")) {
replay.aligned_alloc(slot, args);
} else if (func == Buffer("calloc")) {
replay.calloc(slot, args);
} else if (func == Buffer("realloc")) {
replay.realloc(slot, args);
} else if (func == Buffer("memalign")) {
replay.memalign(slot, args);
} else if (func == Buffer("valloc")) {
replay.valloc(slot, args);
} else {
die("Malformed input");
}
}
return 0;
}