Files
tubestation/ipc/glue/ForkServer.cpp
Jed Davis ffb078cedf Bug 1752638 - Part 2: remote waitpid/SIGCHLD to/from the fork server. r=ipc-reviewers,nika
There are two parts to this:

1. A new sync IPC call to the fork server which is basically just
waitpid: it takes a pid and a flag for whether to block, and returns
either the exit status, an error, or an indication that the process is
still running.  The code in the parent process which would previously
hack around the fork server case with `kill(pid, 0)` now uses this
instead.

2. The fork server now has a `SIGCHLD` handler which writes to a pipe
given at startup.  Currently this is connected to the same pipe-to-self
used in `ProcessWatcher` for the parents' own `SIGCHLD`s.  Thus, the
existing `ProcessWatcher` is mostly unmodified.

Measured locally, these remote `waitpid`s take about 50µs, compared to
about 10µs for in-process.  So, while it's possible for the callback
for `SIGCHLD` pipe reads to call this `O(n)` times when `n` child
processes are exiting at once, the time taken shouldn't be a significant
responsiveness problem; I measured 250µs max while closing a tab for a
popular website with a large number of out-of-process iframes.  This can
be optimized later to batch the messages if needed.

The other potential performance issue is if a remote `waitpid` is blocked
behind a remote fork.  However, this is still an improvement over the
non-forkserver status quo: if we `clone` the parent process, that blocks
all threads for, empirically, about 15ms; cloning the fork server is
about 2.5ms, and that would only block another thread if it happens to
race with another child process exiting and not every time.  We also
prelaunch content processes during idle time, so this type of jank is
less likely to be user-visible in any case.

Importantly, the way this patch works, the `waitpid` is synchronous with
respect to the thread in the parent process making the requeste, so as
long as the fork server hasn't crashed then we can know that the process
with a given pid is in fact the process we expect it to be.

Differential Revision: https://phabricator.services.mozilla.com/D240714
2025-05-15 04:36:15 +00:00

399 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ipc/ForkServer.h"
#include "base/eintr_wrapper.h"
#include "chrome/common/chrome_switches.h"
#include "ipc/IPCMessageUtilsSpecializations.h"
#include "mozilla/BlockingResourceBase.h"
#include "mozilla/GeckoArgs.h"
#include "mozilla/Logging.h"
#include "mozilla/Omnijar.h"
#include "mozilla/ProcessType.h"
#include "mozilla/ipc/FileDescriptor.h"
#include "mozilla/ipc/IPDLParamTraits.h"
#include "mozilla/ipc/ProcessUtils.h"
#include "mozilla/ipc/ProtocolMessageUtils.h"
#include "mozilla/ipc/SetProcessTitle.h"
#include "nsTraceRefcnt.h"
#include <fcntl.h>
#include <string.h>
#include <sys/wait.h>
#include <unistd.h>
#if defined(XP_LINUX) && defined(MOZ_SANDBOX)
# include "mozilla/SandboxLaunch.h"
#endif
#include <algorithm>
namespace mozilla {
namespace ipc {
LazyLogModule gForkServiceLog("ForkService");
static int gSignalPipe = -1;
static void HandleSigChld(int aSignal) {
MOZ_ASSERT(aSignal == SIGCHLD);
const char msg = 0;
HANDLE_EINTR(write(gSignalPipe, &msg, 1));
}
ForkServer::ForkServer(int* aArgc, char*** aArgv) : mArgc(aArgc), mArgv(aArgv) {
SetThisProcessName("forkserver");
Maybe<UniqueFileHandle> ipcHandle = geckoargs::sIPCHandle.Get(*aArgc, *aArgv);
if (!ipcHandle) {
MOZ_CRASH("forkserver missing ipcHandle argument");
}
// Hold our IPC FD while our MiniTransceiver is alive.
mIpcFd = ipcHandle.extract();
mTcver = MakeUnique<MiniTransceiver>(mIpcFd.get(),
DataBufferClear::AfterReceiving);
auto signalPipe = geckoargs::sSignalPipe.Get(*aArgc, *aArgv);
if (signalPipe) {
gSignalPipe = signalPipe->release();
signal(SIGCHLD, HandleSigChld);
} else {
signal(SIGCHLD, SIG_IGN);
}
}
/**
* Preload any resources that the forked child processes might need,
* and which might change incompatibly or become unavailable by the
* time they're started. For example: the omnijar files, or certain
* shared libraries.
*/
static void ForkServerPreload(int& aArgc, char** aArgv) {
Omnijar::ChildProcessInit(aArgc, aArgv);
}
/**
* Start providing the service at the IPC channel.
*/
bool ForkServer::HandleMessages() {
while (true) {
UniquePtr<IPC::Message> msg;
if (!mTcver->Recv(msg)) {
break;
}
switch (msg->type()) {
case Msg_ForkNewSubprocess__ID:
if (HandleForkNewSubprocess(std::move(msg))) {
// New process - child
return false;
}
break;
case Msg_WaitPid__ID:
HandleWaitPid(std::move(msg));
break;
default:
MOZ_LOG(gForkServiceLog, LogLevel::Verbose,
("unknown message type %d\n", msg->type()));
}
}
// Stop the server
return true;
}
template <class P>
static void ReadParamInfallible(IPC::MessageReader* aReader, P* aResult,
const char* aCrashMessage) {
if (!IPC::ReadParam(aReader, aResult)) {
MOZ_CRASH_UNSAFE(aCrashMessage);
}
}
/**
* Parse a Message to obtain a `LaunchOptions` and the attached fd
* that the child will use to receive its `SubprocessExecInfo`.
*/
static bool ParseForkNewSubprocess(IPC::Message& aMsg,
UniqueFileHandle* aExecFd,
base::LaunchOptions* aOptions) {
// The type was already checked in HandleMessages
MOZ_ASSERT(aMsg.type() == Msg_ForkNewSubprocess__ID);
IPC::MessageReader reader(aMsg);
#if defined(XP_LINUX) && defined(MOZ_SANDBOX)
ReadParamInfallible(&reader, &aOptions->fork_flags,
"Error deserializing 'int'");
ReadParamInfallible(&reader, &aOptions->sandbox_chroot_server,
"Error deserializing 'UniqueFileHandle'");
#endif
ReadParamInfallible(&reader, aExecFd,
"Error deserializing 'UniqueFileHandle'");
reader.EndRead();
return true;
}
/**
* Parse a `Message`, in the forked child process, to get the argument
* and environment strings.
*/
static bool ParseSubprocessExecInfo(IPC::Message& aMsg,
geckoargs::ChildProcessArgs* aArgs,
base::environment_map* aEnv) {
if (aMsg.type() != Msg_SubprocessExecInfo__ID) {
MOZ_LOG(gForkServiceLog, LogLevel::Verbose,
("unknown message type %d (!= %d)\n", aMsg.type(),
Msg_SubprocessExecInfo__ID));
return false;
}
IPC::MessageReader reader(aMsg);
ReadParamInfallible(&reader, aEnv, "Error deserializing 'env_map'");
ReadParamInfallible(&reader, &aArgs->mArgs, "Error deserializing 'mArgs'");
ReadParamInfallible(&reader, &aArgs->mFiles, "Error deserializing 'mFiles'");
reader.EndRead();
return true;
}
// Run in the forked child process. Receives a message on `aExecFd` containing
// the new process configuration, and updates the environment, command line, and
// passed file handles to reflect the new process.
static void ForkedChildProcessInit(int aExecFd, int* aArgc, char*** aArgv) {
// Remove the fork-server-specific SIGCHLD handler.
signal(SIGCHLD, SIG_DFL);
// This process is currently single-threaded, so the fd used by the
// signal handler can be safely closed once the handler is removed.
if (gSignalPipe >= 0) {
close(gSignalPipe);
gSignalPipe = -1;
}
// Content process
MiniTransceiver execTcver(aExecFd);
UniquePtr<IPC::Message> execMsg;
if (!execTcver.Recv(execMsg)) {
// Crashing here isn't great, because the crash reporter isn't
// set up, but we don't have a lot of options currently. Also,
// receive probably won't fail unless the parent also crashes.
printf_stderr("ForkServer: SubprocessExecInfo receive error\n");
MOZ_CRASH();
}
geckoargs::ChildProcessArgs args;
base::environment_map env;
if (!ParseSubprocessExecInfo(*execMsg, &args, &env)) {
printf_stderr("ForkServer: SubprocessExecInfo parse error\n");
MOZ_CRASH();
}
// Set environment variables as specified in env_map.
for (auto& elt : env) {
setenv(elt.first.c_str(), elt.second.c_str(), 1);
}
// Initialize passed file handles.
geckoargs::SetPassedFileHandles(std::move(args.mFiles));
// Change argc & argv of main() with the arguments passing
// through IPC.
char** argv = new char*[args.mArgs.size() + 1];
char** p = argv;
for (auto& elt : args.mArgs) {
*p++ = strdup(elt.c_str());
}
*p = nullptr;
*aArgv = argv;
*aArgc = args.mArgs.size();
mozilla::SetProcessTitle(args.mArgs);
}
/**
* Extract parameters from the |Message| to create a
* |base::AppProcessBuilder| as |mAppProcBuilder|.
*
* It will return in both the fork server process and the new content
* process. |mAppProcBuilder| is null for the fork server.
*/
bool ForkServer::HandleForkNewSubprocess(UniquePtr<IPC::Message> aMessage) {
UniqueFileHandle execFd;
base::LaunchOptions options;
if (!ParseForkNewSubprocess(*aMessage, &execFd, &options)) {
return false;
}
#if defined(MOZ_MEMORY) && defined(DEBUG)
jemalloc_stats_t stats;
jemalloc_stats(&stats);
MOZ_ASSERT(stats.narenas == 1,
"ForkServer before fork()/clone() should have a single arena.");
#endif
#if defined(XP_LINUX) && defined(MOZ_SANDBOX)
mozilla::SandboxLaunch launcher;
if (!launcher.Prepare(&options)) {
MOZ_CRASH("SandboxLaunch::Prepare failed");
}
#else
struct {
pid_t Fork() { return fork(); }
} launcher;
#endif
// Avoid any contents of buffered stdout/stderr being sent by forked
// children.
fflush(stdout);
fflush(stderr);
pid_t pid = launcher.Fork();
if (pid < 0) {
MOZ_CRASH("failed to fork");
}
// NOTE: After this point, if pid == 0, we're in the newly forked child
// process.
if (pid == 0) {
// Re-configure to a child process, and return to our caller.
ForkedChildProcessInit(execFd.get(), mArgc, mArgv);
return true;
}
// Fork server process
IPC::Message reply(MSG_ROUTING_CONTROL, Reply_ForkNewSubprocess__ID);
IPC::MessageWriter writer(reply);
WriteIPDLParam(&writer, nullptr, pid);
mTcver->SendInfallible(reply, "failed to send a reply message");
return false;
}
void ForkServer::HandleWaitPid(UniquePtr<IPC::Message> aMessage) {
MOZ_ASSERT(aMessage->type() == Msg_WaitPid__ID);
IPC::MessageReader reader(*aMessage);
pid_t pid;
bool block;
ReadParamInfallible(&reader, &pid, "Error deserializing 'pid_t'");
ReadParamInfallible(&reader, &block, "Error deserializing 'bool'");
// It's safe to use plain waitpid here (and not the waitid/WNOWAIT
// contraption used in the parent process) because this process is
// single-threaded so there's no possibility of another thread
// trying to ptrace the same child process.
int status;
pid_t rv = HANDLE_EINTR(waitpid(pid, &status, block ? 0 : WNOHANG));
// Three possibilities here:
// Terminated: rv > 0; return {false, status}
// Running: rv = 0; return {true, 0}
// Error: rv < 0; return {true, errno}
bool isErr = rv <= 0;
int err = rv < 0 ? errno : 0;
MOZ_ASSERT(isErr || rv == pid);
IPC::Message reply(MSG_ROUTING_CONTROL, Reply_WaitPid__ID);
IPC::MessageWriter writer(reply);
WriteParam(&writer, isErr);
WriteParam(&writer, isErr ? err : status);
mTcver->SendInfallible(reply, "failed to send a reply message");
}
/**
* Setup and run a fork server at the main thread.
*
* This function returns for two reasons:
* - the fork server is stopped normally, or
* - a new process is forked from the fork server and this function
* returned in the child, the new process.
*
* For the later case, aArgc and aArgv are modified to pass the
* arguments from the chrome process.
*/
bool ForkServer::RunForkServer(int* aArgc, char*** aArgv) {
MOZ_ASSERT(XRE_IsForkServerProcess(), "fork server process only");
#ifdef DEBUG
if (getenv("MOZ_FORKSERVER_WAIT_GDB")) {
printf(
"Waiting for 30 seconds."
" Attach the fork server with gdb %s %d\n",
(*aArgv)[0], base::GetCurrentProcId());
sleep(30);
}
bool sleep_newproc = !!getenv("MOZ_FORKSERVER_WAIT_GDB_NEWPROC");
#endif
SetProcessTitleInit(*aArgv);
// Do this before NS_LogInit() to avoid log files taking lower
// FDs.
ForkServer forkserver(aArgc, aArgv);
NS_LogInit();
mozilla::LogModule::Init(0, nullptr);
ForkServerPreload(*aArgc, *aArgv);
MOZ_LOG(gForkServiceLog, LogLevel::Verbose, ("Start a fork server"));
{
DebugOnly<base::ProcessHandle> forkserver_pid = base::GetCurrentProcId();
if (forkserver.HandleMessages()) {
// In the fork server process
// The server has stopped.
MOZ_LOG(gForkServiceLog, LogLevel::Verbose,
("Terminate the fork server"));
Omnijar::CleanUp();
NS_LogTerm();
return true;
}
// Now, we are running in a content process just forked from
// the fork server process.
MOZ_ASSERT(base::GetCurrentProcId() != forkserver_pid);
MOZ_LOG(gForkServiceLog, LogLevel::Verbose, ("Fork a new content process"));
}
#ifdef DEBUG
if (sleep_newproc) {
printf(
"Waiting for 30 seconds."
" Attach the new process with gdb %s %d\n",
(*aArgv)[0], base::GetCurrentProcId());
sleep(30);
}
#endif
NS_LogTerm();
nsTraceRefcnt::CloseLogFilesAfterFork();
// Update our GeckoProcessType and GeckoChildID, removing the arguments.
if (*aArgc < 2) {
MOZ_CRASH("forked process missing process type and childid arguments");
}
SetGeckoProcessType((*aArgv)[--*aArgc]);
SetGeckoChildID((*aArgv)[--*aArgc]);
MOZ_ASSERT(!XRE_IsForkServerProcess(),
"fork server created another fork server?");
// This is now a child process, and it may even be a Content process.
// It is required that the PRNG at least is re-initialized so the same state
// is not shared accross all child processes, and in case of a Content process
// it is also required that the small allocation are not being randomized ;
// failing to do so will lead to performance regressions, e.g. as in
// bug 1912262.
#if defined(MOZ_MEMORY)
jemalloc_reset_small_alloc_randomization(
/* aRandomizeSmall */ !XRE_IsContentProcess());
#endif
// Open log files again with right names and the new PID.
nsTraceRefcnt::ReopenLogFilesAfterFork(XRE_GetProcessTypeString());
return false;
}
} // namespace ipc
} // namespace mozilla