This patch contains the bulk of the implementation of the modal. Most of it is UI work and wiring together the various components. There is a bit of complexity in the clustering algorithm, as I implemented the DBSCAN algorithm to help cluster the text recognition results. I filed Bug 1782586 to improve the DBSCAN algorithm, but currently it works the same as the algorithm is described on Wikipedia. Note that the tests are in the following patch in order to keep the line count small for this patch. Differential Revision: https://phabricator.services.mozilla.com/D153396
386 lines
10 KiB
JavaScript
386 lines
10 KiB
JavaScript
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
window.docShell.chromeEventHandler.classList.add("textRecognitionDialogFrame");
|
|
|
|
window.addEventListener("DOMContentLoaded", () => {
|
|
// The arguments are passed in as the final parameters to TabDialogBox.prototype.open.
|
|
new TextRecognitionModal(...window.arguments);
|
|
});
|
|
|
|
/**
|
|
* @typedef {Object} TextRecognitionResult
|
|
* @property {number} confidence
|
|
* @property {string} string
|
|
* @property {DOMQuad} quad
|
|
*/
|
|
|
|
class TextRecognitionModal {
|
|
/**
|
|
* @param {Promise<TextRecognitionResult[]>} resultsPromise
|
|
* @param {() => {}} resizeVertically
|
|
* @param {(url: string, where: string, params: Object) => {}} openLinkIn
|
|
*/
|
|
constructor(resultsPromise, resizeVertically, openLinkIn) {
|
|
/** @type {HTMLElement} */
|
|
this.textEl = document.querySelector(".textRecognitionText");
|
|
|
|
/** @type {NodeListOf<HTMLElement>} */
|
|
this.headerEls = document.querySelectorAll(".textRecognitionHeader");
|
|
|
|
/** @type {HTMLAnchorElement} */
|
|
this.linkEl = document.querySelector(
|
|
"#text-recognition-header-no-results a"
|
|
);
|
|
|
|
this.resizeVertically = resizeVertically;
|
|
this.openLinkIn = openLinkIn;
|
|
this.setupLink();
|
|
this.setupCloseHandler();
|
|
|
|
this.showHeaderByID("text-recognition-header-loading");
|
|
|
|
resultsPromise.then(
|
|
({ results, direction }) => {
|
|
if (results.length === 0) {
|
|
// Update the UI to indicate that there were no results.
|
|
this.showHeaderByID("text-recognition-header-no-results");
|
|
return;
|
|
}
|
|
|
|
// There were results, cluster them into a nice presentation, and present
|
|
// the results to the UI.
|
|
this.runClusteringAndUpdateUI(results, direction);
|
|
this.showHeaderByID("text-recognition-header-results");
|
|
},
|
|
error => {
|
|
// There was an error in the text recognition call. Treat this as the same
|
|
// as if there were no results, but report the error to the console.
|
|
console.error(error);
|
|
this.showHeaderByID("text-recognition-header-no-results");
|
|
}
|
|
);
|
|
}
|
|
|
|
setupCloseHandler() {
|
|
document
|
|
.querySelector("#text-recognition-close")
|
|
.addEventListener("click", () => {
|
|
window.close();
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Apply the variables for the support.mozilla.org URL.
|
|
*/
|
|
setupLink() {
|
|
this.linkEl.href = Services.urlFormatter.formatURL(this.linkEl.href);
|
|
this.linkEl.addEventListener("click", event => {
|
|
event.preventDefault();
|
|
this.openLinkIn(this.linkEl.href, "tab", {
|
|
fromChrome: true,
|
|
triggeringPrincipal: Services.scriptSecurityManager.getSystemPrincipal(),
|
|
});
|
|
});
|
|
}
|
|
|
|
/**
|
|
* A helper to only show the appropriate header.
|
|
*
|
|
* @param {string} id
|
|
*/
|
|
showHeaderByID(id) {
|
|
for (const header of this.headerEls) {
|
|
header.style.display = "none";
|
|
}
|
|
|
|
document.getElementById(id).style.display = "";
|
|
this.resizeVertically();
|
|
}
|
|
|
|
/**
|
|
* @param {string} text
|
|
*/
|
|
static copy(text) {
|
|
const clipboard = Cc["@mozilla.org/widget/clipboardhelper;1"].getService(
|
|
Ci.nsIClipboardHelper
|
|
);
|
|
clipboard.copyString(text);
|
|
}
|
|
|
|
/**
|
|
* Cluster the text based on its visual position.
|
|
*
|
|
* @param {TextRecognitionResult[]} results
|
|
* @param {"ltr" | "rtl"} direction
|
|
*/
|
|
runClusteringAndUpdateUI(results, direction) {
|
|
/** @type {Vec2[]} */
|
|
const centers = [];
|
|
|
|
for (const result of results) {
|
|
const p = result.quad;
|
|
|
|
// Pick either the left-most or right-most edge. This optimizes for
|
|
// aligned text over centered text.
|
|
const minOrMax = direction === "ltr" ? Math.min : Math.max;
|
|
|
|
centers.push([
|
|
minOrMax(p.p1.x, p.p2.x, p.p3.x, p.p4.x),
|
|
(p.p1.y, p.p2.y, p.p3.y, p.p4.y) / 4,
|
|
]);
|
|
}
|
|
|
|
const distSq = new DistanceSquared(centers);
|
|
|
|
// The values are ranged 0 - 1. This value might be able to be determined
|
|
// algorithmically.
|
|
const averageDistance = Math.sqrt(distSq.quantile(0.2));
|
|
const clusters = densityCluster(
|
|
centers,
|
|
// Neighborhood radius:
|
|
averageDistance,
|
|
// Minimum points to form a cluster:
|
|
2
|
|
);
|
|
|
|
let text = "";
|
|
for (const cluster of clusters) {
|
|
const pCluster = document.createElement("p");
|
|
pCluster.className = "textRecognitionTextCluster";
|
|
|
|
for (let i = 0; i < cluster.length; i++) {
|
|
const index = cluster[i];
|
|
// Each cluster could be a paragraph, so add a newline to the end
|
|
// for better copying.
|
|
const ending = i + 1 === cluster.length ? "\n" : " ";
|
|
|
|
const result = results[index];
|
|
text += result.string + ending;
|
|
pCluster.innerText += result.string + ending;
|
|
}
|
|
this.textEl.appendChild(pCluster);
|
|
}
|
|
|
|
this.textEl.style.display = "block";
|
|
|
|
TextRecognitionModal.copy(text);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A two dimensional vector.
|
|
*
|
|
* @typedef {[number, number]} Vec2
|
|
*/
|
|
|
|
/**
|
|
* @typedef {number} PointIndex
|
|
*/
|
|
|
|
/**
|
|
* An implementation of the DBSCAN clustering algorithm.
|
|
*
|
|
* https://en.wikipedia.org/wiki/DBSCAN#Algorithm
|
|
*
|
|
* @param {Vec2[]} points
|
|
* @param {number} distance
|
|
* @param {number} minPoints
|
|
* @returns {Array<PointIndex[]>}
|
|
*/
|
|
function densityCluster(points, distance, minPoints) {
|
|
/**
|
|
* A flat of array of labels that match the index of the points array. The values have
|
|
* the following meaning:
|
|
*
|
|
* undefined := No label has been assigned
|
|
* "noise" := Noise is a point that hasn't been clustered.
|
|
* number := Cluster index
|
|
*
|
|
* @type {undefined | "noise" | Index}
|
|
*/
|
|
const labels = Array(points.length);
|
|
const noiseLabel = "noise";
|
|
|
|
let nextClusterIndex = 0;
|
|
|
|
// Every point must be visited at least once. Often they will be visited earlier
|
|
// in the interior of the loop.
|
|
for (let pointIndex = 0; pointIndex < points.length; pointIndex++) {
|
|
if (labels[pointIndex] !== undefined) {
|
|
// This point is already labeled from the interior logic.
|
|
continue;
|
|
}
|
|
|
|
// Get the neighbors that are within the range of the epsilon value, includes
|
|
// the current point.
|
|
const neighbors = getNeighborsWithinDistance(points, distance, pointIndex);
|
|
|
|
if (neighbors.length < minPoints) {
|
|
labels[pointIndex] = noiseLabel;
|
|
continue;
|
|
}
|
|
|
|
// Start a new cluster.
|
|
const clusterIndex = nextClusterIndex++;
|
|
labels[pointIndex] = clusterIndex;
|
|
|
|
// Fill the cluster. The neighbors array grows.
|
|
for (let i = 0; i < neighbors.length; i++) {
|
|
const nextPointIndex = neighbors[i];
|
|
if (typeof labels[nextPointIndex] === "number") {
|
|
// This point was already claimed, ignore it.
|
|
continue;
|
|
}
|
|
|
|
if (labels[nextPointIndex] === noiseLabel) {
|
|
// Claim this point and move on since noise has no neighbors.
|
|
labels[nextPointIndex] = clusterIndex;
|
|
continue;
|
|
}
|
|
|
|
// Claim this point as part of this cluster.
|
|
labels[nextPointIndex] = clusterIndex;
|
|
|
|
const newNeighbors = getNeighborsWithinDistance(
|
|
points,
|
|
distance,
|
|
nextPointIndex
|
|
);
|
|
|
|
if (newNeighbors.length >= minPoints) {
|
|
// Add on to the neighbors if more are found.
|
|
for (const newNeighbor of newNeighbors) {
|
|
if (!neighbors.includes(newNeighbor)) {
|
|
neighbors.push(newNeighbor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const clusters = [];
|
|
|
|
// Pre-populate the clusters.
|
|
for (let i = 0; i < nextClusterIndex; i++) {
|
|
clusters[i] = [];
|
|
}
|
|
|
|
// Turn the labels into clusters, adding the noise to the end.
|
|
for (let pointIndex = 0; pointIndex < labels.length; pointIndex++) {
|
|
const label = labels[pointIndex];
|
|
if (typeof label === "number") {
|
|
clusters[label].push(pointIndex);
|
|
} else if (label === noiseLabel) {
|
|
// Add a single cluster.
|
|
clusters.push([pointIndex]);
|
|
} else {
|
|
throw new Error("Logic error. Expected every point to have a label.");
|
|
}
|
|
}
|
|
|
|
clusters.sort((a, b) => points[b[0]][1] - points[a[0]][1]);
|
|
|
|
return clusters;
|
|
}
|
|
|
|
/**
|
|
* @param {Vec2[]} points
|
|
* @param {number} distance
|
|
* @param {number} index,
|
|
* @returns {Index[]}
|
|
*/
|
|
function getNeighborsWithinDistance(points, distance, index) {
|
|
let neighbors = [index];
|
|
// There is no reason to compute the square root here if we square the
|
|
// original distance.
|
|
const distanceSquared = distance * distance;
|
|
|
|
for (let otherIndex = 0; otherIndex < points.length; otherIndex++) {
|
|
if (otherIndex === index) {
|
|
continue;
|
|
}
|
|
const a = points[index];
|
|
const b = points[otherIndex];
|
|
const dx = a[0] - b[0];
|
|
const dy = a[1] - b[1];
|
|
|
|
if (dx * dx + dy * dy < distanceSquared) {
|
|
neighbors.push(otherIndex);
|
|
}
|
|
}
|
|
|
|
return neighbors;
|
|
}
|
|
|
|
/**
|
|
* This class pre-computes the squared distances to allow for efficient distance lookups,
|
|
* and it provides a way to look up a distance quantile.
|
|
*/
|
|
class DistanceSquared {
|
|
/** @type {Map<number>} */
|
|
#distances = new Map();
|
|
#list;
|
|
#distancesSorted;
|
|
|
|
/**
|
|
* @param {Vec2[]} list
|
|
*/
|
|
constructor(list) {
|
|
this.#list = list;
|
|
for (let aIndex = 0; aIndex < list.length; aIndex++) {
|
|
for (let bIndex = aIndex + 1; bIndex < list.length; bIndex++) {
|
|
const id = this.#getTupleID(aIndex, bIndex);
|
|
const a = this.#list[aIndex];
|
|
const b = this.#list[bIndex];
|
|
const dx = a[0] - b[0];
|
|
const dy = a[1] - b[1];
|
|
this.#distances.set(id, dx * dx + dy * dy);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a unique tuple ID to identify the relationship between two vectors.
|
|
*/
|
|
#getTupleID(aIndex, bIndex) {
|
|
return aIndex < bIndex
|
|
? aIndex * this.#list.length + bIndex
|
|
: bIndex * this.#list.length + aIndex;
|
|
}
|
|
|
|
/**
|
|
* Returns the distance squared between two vectors.
|
|
*
|
|
* @param {Index} aIndex
|
|
* @param {Index} bIndex
|
|
* @returns {number} The distance squared
|
|
*/
|
|
get(aIndex, bIndex) {
|
|
return this.#distances.get(this.#getTupleID(aIndex, bIndex));
|
|
}
|
|
|
|
/**
|
|
* Returns the quantile squared.
|
|
*
|
|
* @param {number} percentile - Ranged between 0 - 1
|
|
* @returns {number}
|
|
*/
|
|
quantile(percentile) {
|
|
if (!this.#distancesSorted) {
|
|
this.#distancesSorted = [...this.#distances.values()].sort(
|
|
(a, b) => a - b
|
|
);
|
|
}
|
|
const index = Math.max(
|
|
0,
|
|
Math.min(
|
|
this.#distancesSorted.length - 1,
|
|
Math.round(this.#distancesSorted.length * percentile)
|
|
)
|
|
);
|
|
return this.#distancesSorted[index];
|
|
}
|
|
}
|