Files
tubestation/mozglue/baseprofiler/core/platform-linux-android.cpp
Nazım Can Altınova 3c32b37bd4 Bug 1964113 - Remove LUL from the baseprofiler r=mstange,profiler-reviewers
Apparently native stackwalking on linux was removed in Bug 1658232. And after
that patch we never had LUL in the baseprofiler. So this patch removes the
copy of the LUL code that we don't use.

Differential Revision: https://phabricator.services.mozilla.com/D247642
2025-05-05 09:11:28 +00:00

493 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google, Inc. nor the names of its contributors
// may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
// This file is used for both Linux and Android.
#include <stdio.h>
#include <math.h>
#include <pthread.h>
#if defined(GP_OS_freebsd)
# include <sys/thr.h>
#endif
#include <semaphore.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <stdlib.h>
#include <sched.h>
#include <ucontext.h>
// Ubuntu Dapper requires memory pages to be marked as
// executable. Otherwise, OS raises an exception when executing code
// in that page.
#include <sys/types.h> // mmap & munmap
#include <sys/mman.h> // mmap & munmap
#include <sys/stat.h> // open
#include <fcntl.h> // open
#include <unistd.h> // sysconf
#include <semaphore.h>
#ifdef __GLIBC__
# include <execinfo.h> // backtrace, backtrace_symbols
#endif // def __GLIBC__
#include <strings.h> // index
#include <errno.h>
#include <stdarg.h>
#include "prenv.h"
#include "mozilla/PodOperations.h"
#include "mozilla/DebugOnly.h"
#include <string.h>
#include <list>
using namespace mozilla;
namespace mozilla {
namespace baseprofiler {
static int64_t MicrosecondsSince1970() {
struct timeval tv;
gettimeofday(&tv, NULL);
return int64_t(tv.tv_sec) * 1000000 + int64_t(tv.tv_usec);
}
void* GetStackTop(void* aGuess) { return aGuess; }
static void PopulateRegsFromContext(Registers& aRegs, ucontext_t* aContext) {
aRegs.mContext = aContext;
mcontext_t& mcontext = aContext->uc_mcontext;
// Extracting the sample from the context is extremely machine dependent.
#if defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
aRegs.mPC = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
aRegs.mSP = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
aRegs.mFP = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
aRegs.mEcx = reinterpret_cast<Address>(mcontext.gregs[REG_ECX]);
aRegs.mEdx = reinterpret_cast<Address>(mcontext.gregs[REG_EDX]);
#elif defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android)
aRegs.mPC = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
aRegs.mSP = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
aRegs.mFP = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
aRegs.mR10 = reinterpret_cast<Address>(mcontext.gregs[REG_R10]);
aRegs.mR12 = reinterpret_cast<Address>(mcontext.gregs[REG_R12]);
#elif defined(GP_PLAT_amd64_freebsd)
aRegs.mPC = reinterpret_cast<Address>(mcontext.mc_rip);
aRegs.mSP = reinterpret_cast<Address>(mcontext.mc_rsp);
aRegs.mFP = reinterpret_cast<Address>(mcontext.mc_rbp);
aRegs.mR10 = reinterpret_cast<Address>(mcontext.mc_r10);
aRegs.mR12 = reinterpret_cast<Address>(mcontext.mc_r12);
#elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
aRegs.mPC = reinterpret_cast<Address>(mcontext.arm_pc);
aRegs.mSP = reinterpret_cast<Address>(mcontext.arm_sp);
aRegs.mFP = reinterpret_cast<Address>(mcontext.arm_fp);
aRegs.mLR = reinterpret_cast<Address>(mcontext.arm_lr);
aRegs.mR7 = reinterpret_cast<Address>(mcontext.arm_r7);
#elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android)
aRegs.mPC = reinterpret_cast<Address>(mcontext.pc);
aRegs.mSP = reinterpret_cast<Address>(mcontext.sp);
aRegs.mFP = reinterpret_cast<Address>(mcontext.regs[29]);
aRegs.mLR = reinterpret_cast<Address>(mcontext.regs[30]);
aRegs.mR11 = reinterpret_cast<Address>(mcontext.regs[11]);
#elif defined(GP_PLAT_arm64_freebsd)
aRegs.mPC = reinterpret_cast<Address>(mcontext.mc_gpregs.gp_elr);
aRegs.mSP = reinterpret_cast<Address>(mcontext.mc_gpregs.gp_sp);
aRegs.mFP = reinterpret_cast<Address>(mcontext.mc_gpregs.gp_x[29]);
aRegs.mLR = reinterpret_cast<Address>(mcontext.mc_gpregs.gp_lr);
aRegs.mR11 = reinterpret_cast<Address>(mcontext.mc_gpregs.gp_x[11]);
#elif defined(GP_PLAT_mips64_linux) || defined(GP_PLAT_mips64_android)
aRegs.mPC = reinterpret_cast<Address>(mcontext.pc);
aRegs.mSP = reinterpret_cast<Address>(mcontext.gregs[29]);
aRegs.mFP = reinterpret_cast<Address>(mcontext.gregs[30]);
#else
# error "bad platform"
#endif
}
#if defined(GP_OS_android)
# define SYS_tgkill __NR_tgkill
#endif
#if defined(GP_OS_linux) || defined(GP_OS_android)
int tgkill(pid_t tgid, pid_t tid, int signalno) {
return syscall(SYS_tgkill, tgid, tid, signalno);
}
#endif
#if defined(GP_OS_freebsd)
# define tgkill thr_kill2
#endif
class PlatformData {
public:
explicit PlatformData(BaseProfilerThreadId aThreadId) {}
~PlatformData() {}
};
////////////////////////////////////////////////////////////////////////
// BEGIN Sampler target specifics
// The only way to reliably interrupt a Linux thread and inspect its register
// and stack state is by sending a signal to it, and doing the work inside the
// signal handler. But we don't want to run much code inside the signal
// handler, since POSIX severely restricts what we can do in signal handlers.
// So we use a system of semaphores to suspend the thread and allow the
// sampler thread to do all the work of unwinding and copying out whatever
// data it wants.
//
// A four-message protocol is used to reliably suspend and later resume the
// thread to be sampled (the samplee):
//
// Sampler (signal sender) thread Samplee (thread to be sampled)
//
// Prepare the SigHandlerCoordinator
// and point sSigHandlerCoordinator at it
//
// send SIGPROF to samplee ------- MSG 1 ----> (enter signal handler)
// wait(mMessage2) Copy register state
// into sSigHandlerCoordinator
// <------ MSG 2 ----- post(mMessage2)
// Samplee is now suspended. wait(mMessage3)
// Examine its stack/register
// state at leisure
//
// Release samplee:
// post(mMessage3) ------- MSG 3 ----->
// wait(mMessage4) Samplee now resumes. Tell
// the sampler that we are done.
// <------ MSG 4 ------ post(mMessage4)
// Now we know the samplee's signal (leave signal handler)
// handler has finished using
// sSigHandlerCoordinator. We can
// safely reuse it for some other thread.
//
// A type used to coordinate between the sampler (signal sending) thread and
// the thread currently being sampled (the samplee, which receives the
// signals).
//
// The first message is sent using a SIGPROF signal delivery. The subsequent
// three are sent using sem_wait/sem_post pairs. They are named accordingly
// in the following struct.
struct SigHandlerCoordinator {
SigHandlerCoordinator() {
PodZero(&mUContext);
int r = sem_init(&mMessage2, /* pshared */ 0, 0);
r |= sem_init(&mMessage3, /* pshared */ 0, 0);
r |= sem_init(&mMessage4, /* pshared */ 0, 0);
MOZ_ASSERT(r == 0);
(void)r;
}
~SigHandlerCoordinator() {
int r = sem_destroy(&mMessage2);
r |= sem_destroy(&mMessage3);
r |= sem_destroy(&mMessage4);
MOZ_ASSERT(r == 0);
(void)r;
}
sem_t mMessage2; // To sampler: "context is in sSigHandlerCoordinator"
sem_t mMessage3; // To samplee: "resume"
sem_t mMessage4; // To sampler: "finished with sSigHandlerCoordinator"
ucontext_t mUContext; // Context at signal
};
struct SigHandlerCoordinator* Sampler::sSigHandlerCoordinator = nullptr;
static void SigprofHandler(int aSignal, siginfo_t* aInfo, void* aContext) {
// Avoid TSan warning about clobbering errno.
int savedErrno = errno;
MOZ_ASSERT(aSignal == SIGPROF);
MOZ_ASSERT(Sampler::sSigHandlerCoordinator);
// By sending us this signal, the sampler thread has sent us message 1 in
// the comment above, with the meaning "|sSigHandlerCoordinator| is ready
// for use, please copy your register context into it."
Sampler::sSigHandlerCoordinator->mUContext =
*static_cast<ucontext_t*>(aContext);
// Send message 2: tell the sampler thread that the context has been copied
// into |sSigHandlerCoordinator->mUContext|. sem_post can never fail by
// being interrupted by a signal, so there's no loop around this call.
int r = sem_post(&Sampler::sSigHandlerCoordinator->mMessage2);
MOZ_ASSERT(r == 0);
// At this point, the sampler thread assumes we are suspended, so we must
// not touch any global state here.
// Wait for message 3: the sampler thread tells us to resume.
while (true) {
r = sem_wait(&Sampler::sSigHandlerCoordinator->mMessage3);
if (r == -1 && errno == EINTR) {
// Interrupted by a signal. Try again.
continue;
}
// We don't expect any other kind of failure
MOZ_ASSERT(r == 0);
break;
}
// Send message 4: tell the sampler thread that we are finished accessing
// |sSigHandlerCoordinator|. After this point it is not safe to touch
// |sSigHandlerCoordinator|.
r = sem_post(&Sampler::sSigHandlerCoordinator->mMessage4);
MOZ_ASSERT(r == 0);
errno = savedErrno;
}
Sampler::Sampler(PSLockRef aLock) : mMyPid(profiler_current_process_id()) {
#if defined(USE_EHABI_STACKWALK)
EHABIStackWalkInit();
#endif
// NOTE: We don't initialize LUL here, instead initializing it in
// SamplerThread's constructor. This is because with the
// profiler_suspend_and_sample_thread entry point, we want to be able to
// sample without waiting for LUL to be initialized.
// Request profiling signals.
struct sigaction sa;
sa.sa_sigaction = SigprofHandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART | SA_SIGINFO;
if (sigaction(SIGPROF, &sa, &mOldSigprofHandler) != 0) {
MOZ_CRASH("Error installing SIGPROF handler in the profiler");
}
}
void Sampler::Disable(PSLockRef aLock) {
// Restore old signal handler. This is global state so it's important that
// we do it now, while gPSMutex is locked.
sigaction(SIGPROF, &mOldSigprofHandler, 0);
}
template <typename Func>
void Sampler::SuspendAndSampleAndResumeThread(
PSLockRef aLock, const RegisteredThread& aRegisteredThread,
const TimeStamp& aNow, const Func& aProcessRegs) {
// Only one sampler thread can be sampling at once. So we expect to have
// complete control over |sSigHandlerCoordinator|.
MOZ_ASSERT(!sSigHandlerCoordinator);
if (!mSamplerTid.IsSpecified()) {
mSamplerTid = profiler_current_thread_id();
}
BaseProfilerThreadId sampleeTid = aRegisteredThread.Info()->ThreadId();
MOZ_RELEASE_ASSERT(sampleeTid != mSamplerTid);
//----------------------------------------------------------------//
// Suspend the samplee thread and get its context.
SigHandlerCoordinator coord; // on sampler thread's stack
sSigHandlerCoordinator = &coord;
// Send message 1 to the samplee (the thread to be sampled), by
// signalling at it.
// This could fail if the thread doesn't exist anymore.
int r = tgkill(mMyPid.ToNumber(), sampleeTid.ToNumber(), SIGPROF);
if (r == 0) {
// Wait for message 2 from the samplee, indicating that the context
// is available and that the thread is suspended.
while (true) {
r = sem_wait(&sSigHandlerCoordinator->mMessage2);
if (r == -1 && errno == EINTR) {
// Interrupted by a signal. Try again.
continue;
}
// We don't expect any other kind of failure.
MOZ_ASSERT(r == 0);
break;
}
//----------------------------------------------------------------//
// Sample the target thread.
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
//
// The profiler's "critical section" begins here. In the critical section,
// we must not do any dynamic memory allocation, nor try to acquire any lock
// or any other unshareable resource. This is because the thread to be
// sampled has been suspended at some entirely arbitrary point, and we have
// no idea which unsharable resources (locks, essentially) it holds. So any
// attempt to acquire any lock, including the implied locks used by the
// malloc implementation, risks deadlock. This includes TimeStamp::Now(),
// which gets a lock on Windows.
// The samplee thread is now frozen and sSigHandlerCoordinator->mUContext is
// valid. We can poke around in it and unwind its stack as we like.
// Extract the current register values.
Registers regs;
PopulateRegsFromContext(regs, &sSigHandlerCoordinator->mUContext);
aProcessRegs(regs, aNow);
//----------------------------------------------------------------//
// Resume the target thread.
// Send message 3 to the samplee, which tells it to resume.
r = sem_post(&sSigHandlerCoordinator->mMessage3);
MOZ_ASSERT(r == 0);
// Wait for message 4 from the samplee, which tells us that it has
// finished with |sSigHandlerCoordinator|.
while (true) {
r = sem_wait(&sSigHandlerCoordinator->mMessage4);
if (r == -1 && errno == EINTR) {
continue;
}
MOZ_ASSERT(r == 0);
break;
}
// The profiler's critical section ends here. After this point, none of the
// critical section limitations documented above apply.
//
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
}
// This isn't strictly necessary, but doing so does help pick up anomalies
// in which the signal handler is running when it shouldn't be.
sSigHandlerCoordinator = nullptr;
}
// END Sampler target specifics
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// BEGIN SamplerThread target specifics
static void* ThreadEntry(void* aArg) {
auto thread = static_cast<SamplerThread*>(aArg);
thread->Run();
return nullptr;
}
SamplerThread::SamplerThread(PSLockRef aLock, uint32_t aActivityGeneration,
double aIntervalMilliseconds, uint32_t aFeatures)
: mSampler(aLock),
mActivityGeneration(aActivityGeneration),
mIntervalMicroseconds(
std::max(1, int(floor(aIntervalMilliseconds * 1000 + 0.5)))) {
// Start the sampling thread. It repeatedly sends a SIGPROF signal. Sending
// the signal ourselves instead of relying on itimer provides much better
// accuracy.
if (pthread_create(&mThread, nullptr, ThreadEntry, this) != 0) {
MOZ_CRASH("pthread_create failed");
}
}
SamplerThread::~SamplerThread() { pthread_join(mThread, nullptr); }
void SamplerThread::SleepMicro(uint32_t aMicroseconds) {
if (aMicroseconds >= 1000000) {
// Use usleep for larger intervals, because the nanosleep
// code below only supports intervals < 1 second.
MOZ_ALWAYS_TRUE(!::usleep(aMicroseconds));
return;
}
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = aMicroseconds * 1000UL;
int rv = ::nanosleep(&ts, &ts);
while (rv != 0 && errno == EINTR) {
// Keep waiting in case of interrupt.
// nanosleep puts the remaining time back into ts.
rv = ::nanosleep(&ts, &ts);
}
MOZ_ASSERT(!rv, "nanosleep call failed");
}
void SamplerThread::Stop(PSLockRef aLock) {
// Restore old signal handler. This is global state so it's important that
// we do it now, while gPSMutex is locked. It's safe to do this now even
// though this SamplerThread is still alive, because the next time the main
// loop of Run() iterates it won't get past the mActivityGeneration check,
// and so won't send any signals.
mSampler.Disable(aLock);
}
// END SamplerThread target specifics
////////////////////////////////////////////////////////////////////////
#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
// We use pthread_atfork() to temporarily disable signal delivery during any
// fork() call. Without that, fork() can be repeatedly interrupted by signal
// delivery, requiring it to be repeatedly restarted, which can lead to *long*
// delays. See bug 837390.
//
// We provide no paf_child() function to run in the child after forking. This
// is fine because we always immediately exec() after fork(), and exec()
// clobbers all process state. Also, we don't want the sampler to resume in the
// child process between fork() and exec(), it would be wasteful.
//
// Unfortunately all this is only doable on non-Android because Bionic doesn't
// have pthread_atfork.
// In the parent, before the fork, increase gSkipSampling to ensure that
// profiler sampling loops will be skipped. There could be one in progress now,
// causing a small delay, but further sampling will be skipped, allowing `fork`
// to complete.
static void paf_prepare() { ++gSkipSampling; }
// In the parent, after the fork, decrease gSkipSampling to let the sampler
// resume sampling (unless other places have made it non-zero as well).
static void paf_parent() { --gSkipSampling; }
static void PlatformInit(PSLockRef aLock) {
// Set up the fork handlers.
pthread_atfork(paf_prepare, paf_parent, nullptr);
}
#else
static void PlatformInit(PSLockRef aLock) {}
#endif
#if defined(HAVE_NATIVE_UNWIND)
// TODO port getcontext from breakpad, if profiler_get_backtrace is needed.
# define REGISTERS_SYNC_POPULATE(regs) \
MOZ_CRASH("profiler_get_backtrace() unsupported");
#endif
} // namespace baseprofiler
} // namespace mozilla