/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ import { createEngine } from "chrome://global/content/ml/EngineProcess.sys.mjs"; import { cosSim, KeywordExtractor, } from "chrome://global/content/ml/NLPUtils.sys.mjs"; import { kmeansPlusPlus, computeCentroidFrom2DArray, euclideanDistance, silhouetteCoefficients, getAccuracyStats, computeRandScore, } from "chrome://global/content/ml/ClusterAlgos.sys.mjs"; const lazy = {}; ChromeUtils.defineESModuleGetters(lazy, { NLP: "resource://gre/modules/NLP.sys.mjs", }); const EMBED_TEXT_KEY = "combined_text"; export const CLUSTER_METHODS = { KMEANS: "KMEANS", }; // Methods for finding similar items for an existing cluster export const ANCHOR_METHODS = { DRIFT: "DRIFT", // We let k-means clustering run, and find the cluster with the most anchor items FIXED: "FIXED", // We always group with the anchor items in the 0 cluster, and never let them be reassinged }; // Methods for finding ignoring other groups that were already grouped export const PREGROUPED_HANDLING_METHODS = { EXCLUDE: "EXCLUDE", // We let k-means clustering run, and find the cluster with the most anchor items IGNORE: "IGNORE", // We always group with the anchor items in the 0 cluster, and never let them be reassinged }; // Methods for suggesting tabs that are similar to current tab export const SUGGEST_OTHER_TABS_METHODS = { KMEANS_WITH_ANCHOR: "KMEANS_WITH_ANCHOR", NEAREST_NEIGHBOR: "NEAREST_NEIGHBOR", }; export const DIM_REDUCTION_METHODS = {}; const MISSING_ANCHOR_IN_CLUSTER_PENALTY = 0.2; const NEAREST_NEIGHBOR_DEFAULT_THRESHOLD = 0.2; const DISSIMILAR_TAB_LABEL = "None"; const MAX_NN_GROUPED_TABS = 4; const ML_TASK_FEATURE_EXTRACTION = "feature-extraction"; const ML_TASK_TEXT2TEXT = "text2text-generation"; const ML_SMART_TAB_EMBEDDING_ENGINE_ID = "smart-tab-embedding-engine"; const ML_SMART_TAB_TOPIC_ENGINE_ID = "smart-tab-topic-engine"; const SMART_TAB_GROUPING_CONFIG = { embedding: { engineId: ML_SMART_TAB_EMBEDDING_ENGINE_ID, dtype: "q8", timeoutMS: 2 * 60 * 1000, // 2 minutes taskName: ML_TASK_FEATURE_EXTRACTION, }, topicGeneration: { engineId: ML_SMART_TAB_TOPIC_ENGINE_ID, dtype: "q8", timeoutMS: 2 * 60 * 1000, // 2 minutes taskName: ML_TASK_TEXT2TEXT, }, dataConfig: { titleKey: "label", descriptionKey: "description", }, clustering: { dimReductionMethod: null, // Not completed. clusterImplementation: CLUSTER_METHODS.KMEANS, clusteringTriesPerK: 3, anchorMethod: ANCHOR_METHODS.FIXED, pregroupedHandlingMethod: PREGROUPED_HANDLING_METHODS.EXCLUDE, pregroupedSilhouetteBoost: 2, // Relative weight of the cluster's score and all other cluster's combined suggestOtherTabsMethod: SUGGEST_OTHER_TABS_METHODS.NEAREST_NEIGHBOR, }, }; /** * For a given set of clusters represented by indices, returns the index of the cluster * that has the most anchor items inside it. * * An anhor item is an index that represents the index to a tab that is already grouped and in * the cluster we're interested in finding more items for. * * @param {number[][]} groupIndices - Array of clusters represented as arrays of indices. * @param {number[]} anchorItems - Array of anchor item indices. * @returns {{anchorClusterIndex: number, numAnchorItemsInCluster: number}} Index of best cluster and the number of anchor items. */ export function getBestAnchorClusterInfo(groupIndices, anchorItems) { const anchorItemSet = new Set(anchorItems); const numItemsList = groupIndices.map(g => g.reduce( (cur, itemIndex) => (anchorItemSet.has(itemIndex) ? cur + 1 : cur), 0 ) ); const anchorClusterIndex = numItemsList.indexOf(Math.max(...numItemsList)); const numAnchorItemsInCluster = numItemsList[anchorClusterIndex]; return { anchorClusterIndex, numAnchorItemsInCluster }; } export class SmartTabGroupingManager { /** * Creates the SmartTabGroupingManager object. * @param {object} config configuration options */ constructor(config) { this.config = config || SMART_TAB_GROUPING_CONFIG; } /** * Generates suggested tabs for an existing or provisional group * @param {object} group active group we are adding tabs to * @param {array} tabs list of tabs from gbrowser, some of which may be grouped in other groups * @returns a list of suggested new tabs. If no new tabs are suggested an empty list is returned. */ async smartTabGroupingForGroup(group, tabs) { // Add tabs to suggested group const groupTabs = group.tabs; const uniqueSpecs = new Set(); const allTabs = tabs.filter(tab => { // Don't include tabs already pinned if (tab.pinned) { return false; } const spec = tab?.linkedBrowser?.currentURI?.spec; if (!spec) { return false; } if (!uniqueSpecs.has(spec)) { uniqueSpecs.add(spec); return true; } return false; }); // find tabs that are part of the group const groupIndices = groupTabs .map(a => allTabs.indexOf(a)) .filter(a => a >= 0); // find tabs that are part of other groups const alreadyGroupedIndices = allTabs .map((t, i) => (t.group ? i : -1)) .filter(a => a >= 0); let suggestedTabs; switch (this.config.suggestOtherTabsMethod) { case SUGGEST_OTHER_TABS_METHODS.KMEANS_WITH_ANCHOR: suggestedTabs = await this.generateClusters( allTabs, null, null, null, groupIndices, alreadyGroupedIndices ).then(clusters => { if (!clusters) { return []; } const targetCluster = clusters.clusterRepresentations.find(c => groupTabs.some(g => c.tabs.includes(g)) ); if (targetCluster) { // Return only tabs not already grouped return targetCluster.tabs.filter(t => !t.group); } return []; }); break; case SUGGEST_OTHER_TABS_METHODS.NEAREST_NEIGHBOR: default: // find nearest neighbors to current group suggestedTabs = await this.findNearestNeighbors( allTabs, groupIndices, alreadyGroupedIndices ); } return suggestedTabs; } /* * Generates similar tabs a grouped list of tabs * @param {array} allTabs all tabs that are part of the window * @param {array} groupedIndices indices of tabs that are already part of the group * @param {array} alreadyGroupedIndices indices of tabs that are part of other groups * @param {number} threshold for nearest neighbor similarity * @returns a list of suggested tabs that are similar to the groupedIndices tabs */ async findNearestNeighbors( allTabs, groupedIndices, alreadyGroupedIndices, threshold = NEAREST_NEIGHBOR_DEFAULT_THRESHOLD, precomputedEmbeddings = [], depth = 1 ) { // get embeddings for all the tabs const tabData = await this._prepareTabData(allTabs); let embeddings = precomputedEmbeddings; if (precomputedEmbeddings.length === 0) { embeddings = await this._generateEmbeddings( tabData.map(a => a[EMBED_TEXT_KEY]) ); } // get tabs that need to be assigned const groupedTabIndices = groupedIndices.concat(alreadyGroupedIndices); const tabsToAssignIndices = allTabs .map((_, index) => index) .filter(i => !groupedTabIndices.includes(i)); let closestTabs = []; const similarTabsIndices = []; for (let i = 0; i < tabsToAssignIndices.length; i++) { let closestScore = null; for ( let j = 0; j < Math.min(groupedIndices.length, MAX_NN_GROUPED_TABS); j++ ) { const cosineSim = cosSim( embeddings[tabsToAssignIndices[i]], embeddings[groupedIndices[j]] ); if (!closestScore || cosineSim > closestScore) { closestScore = cosineSim; } } if (closestScore > threshold) { closestTabs.push([allTabs[tabsToAssignIndices[i]], closestScore]); similarTabsIndices.push(tabsToAssignIndices[i]); } } closestTabs.sort((a, b) => b[1] - a[1]); closestTabs = closestTabs.map(t => t[0]); // recurse once if the initial call only had a single tab // and we found at least 1 similar tab - this improves recall if (groupedIndices.length === 1 && !!closestTabs.length && depth === 1) { const recurseSimilarTabs = await this.findNearestNeighbors( allTabs, similarTabsIndices, alreadyGroupedIndices.concat(groupedIndices), threshold, embeddings, depth - 1 ); closestTabs = closestTabs.concat(recurseSimilarTabs); } return closestTabs; } /** * This function will terminate a grouping or label generation in progress * It is currently not implemented. */ terminateProcess() { // TODO - teminate AI processes, This method will be // called when tab grouping panel is closed. } /** * Changes the clustering method. Must be one of supported methods. * @param {string} method Name of method */ setClusteringMethod(method) { if (!(method in CLUSTER_METHODS)) { throw new Error(`Clustering method ${method} not supported`); } this.config.clustering.clusterImplementation = method; } /** * Set the technique for clustering when certain tabs are already assigned to groups * * @param {string} method which is one of ANCHOR_METHODS */ setAnchorMethod(method) { if (!(method in ANCHOR_METHODS)) { throw new Error(`Clustering anchor method ${method} not supported`); } this.config.clustering.anchorMethod = method; } setSilBoost(boost) { this.config.clustering.pregroupedSilhouetteBoost = boost; } /** * Sets method to reduce dimensionality of embeddings prior to clustering * @param {string} method Name of method */ setDimensionReductionMethod(method) { if (method && !(method in DIM_REDUCTION_METHODS)) { throw new Error(`Dimension reduction method ${method} not supported`); } this.config.clustering.dimReductionMethod = method; } /** * Sets the field name of the title of a page to be used when clustering or generating embeddings * This is useful when clustering test data that is not a tab object * @param {string} titleKey KEY FOR THE TITLE */ setDataTitleKey(titleKey) { this.config.dataConfig.titleKey = titleKey; } /** * Logs to the appropriate place for debugging. Console for now * @param {string} msg Message to log */ log(_msg) {} async _prepareTabData(tabList) { const titleKey = this.config.dataConfig.titleKey; const descriptionKey = this.config.dataConfig.descriptionKey; const structuredData = []; for (let tab of tabList) { const description = descriptionKey && tab[descriptionKey]; let textToEmbed; if (description) { textToEmbed = tab[titleKey] + " " + description; } else { textToEmbed = tab[titleKey] || "Unknown"; } structuredData.push({ [EMBED_TEXT_KEY]: textToEmbed, title: tab[titleKey], description, url: tab?.linkedBrowser?.currentURI?.spec, }); } return structuredData; } /** * Creates an ML engine for a given config. * @param {*} engineConfig * @returns MLEngine */ async _createMLEngine(engineConfig) { const { featureId, engineId, dtype, taskName, timeoutMS, modelId, modelRevision, } = engineConfig; let initData = { featureId, engineId, dtype, taskName, timeoutMS, modelId, modelRevision, }; return await createEngine(initData); } /** * Generates embeddings from a list of tab data structures * @param tabList List of tabs with label (title) and description keys * @returns {Promise<*[]>} List of embeddings (2d array) * @private */ async _generateEmbeddings(textToEmbedList) { const inputData = { inputArgs: textToEmbedList, runOptions: { pooling: "mean", normalize: true, }, }; if ( !this.embeddingEngine || this.embeddingEngine?.engineStatus === "closed" ) { this.embeddingEngine = await this._createMLEngine(this.config.embedding); } const request = { args: [inputData.inputArgs], options: inputData.runOptions, }; return await this.embeddingEngine.run(request); } /** * Clusters in desired methods * based on the config of the class * @param tabList List of tabs as array * @param docEmbeddings Precomputed embeddings for the Tab as two dimensional array * @param k Desired number of clusters. Tries a range of sizes if 0. * @param {function} randomFunc Optional seeded random number generator for testing * @returns {SmartTabGroupingResult} * @private */ _clusterEmbeddings({ tabs, embeddings, k, randomFunc, anchorIndices, alreadyGroupedIndices = [], }) { let allItems; const freezeAnchorsInZeroCluster = anchorIndices && this.config.clustering.anchorMethod == ANCHOR_METHODS.FIXED; const dimReductionMethod = this.config.clustering.dimReductionMethod; switch (dimReductionMethod) { default: // Dimensionality reduction support is landing very soon. break; } k = k || 0; let startK = k; let endK = k + 1; if (!k) { startK = 2; // Find a reasonable max # of clusters endK = Math.min( Math.floor(Math.log(embeddings.length) * 2.0), embeddings.length ) + 1; } let bestResult; let bestResultSilScore = -100.0; let bestResultCenterCluster = 0; const clusteringMethod = this.config.clustering.clusterImplementation; const clusteringTriesPerK = this.config.clustering.clusteringTriesPerK; for (let curK = startK; curK < endK; curK++) { let bestItemsForK; let bestInertiaForK = 500000000000; for (let j = 0; j < clusteringTriesPerK; j++) { switch (clusteringMethod) { case CLUSTER_METHODS.KMEANS: allItems = kmeansPlusPlus({ data: embeddings, k: curK, maxIterations: 0, randomFunc, anchorIndices, preassignedIndices: this.config.clustering.pregroupedHandlingMethod === PREGROUPED_HANDLING_METHODS.EXCLUDE ? alreadyGroupedIndices : [], freezeAnchorsInZeroCluster, }); break; default: throw Error("Clustering implementation not supported"); } const tempResult = new SmartTabGroupingResult({ indices: allItems, embeddings, config: this.config, }); const inertia = tempResult.getCentroidInertia(); if (inertia < bestInertiaForK) { bestInertiaForK = inertia; bestItemsForK = tempResult; } } const silScores = silhouetteCoefficients( embeddings, bestItemsForK.indices ); if ( freezeAnchorsInZeroCluster && this.config.clustering.pregroupedSilhouetteBoost > 0 ) { // Boost silhouette score of target cluster when we are grouping around an existing cluster // pregroupedSilhouetteBoost indicates the relative weight of the cluster's score and all other cluster's combined silScores[0] *= this.config.clustering.pregroupedSilhouetteBoost; } let avgSil = silScores.reduce((p, c) => p + c, 0) / silScores.length; let curAnchorCluster = 0; if (anchorIndices && !freezeAnchorsInZeroCluster) { const { anchorClusterIndex, numAnchorItemsInCluster } = getBestAnchorClusterInfo(bestItemsForK.indices, anchorIndices); curAnchorCluster = anchorClusterIndex; const penalty = (MISSING_ANCHOR_IN_CLUSTER_PENALTY * (anchorIndices.length - numAnchorItemsInCluster)) / anchorIndices.length; avgSil -= penalty; } if (avgSil > bestResultSilScore) { bestResultSilScore = avgSil; bestResult = bestItemsForK.indices; bestResultCenterCluster = curAnchorCluster; } } const result = new SmartTabGroupingResult({ indices: bestResult, tabs, embeddings, config: this.config, }); if (anchorIndices) { result.setAnchorClusterIndex( freezeAnchorsInZeroCluster ? 0 : bestResultCenterCluster ); // In our k-means clustering implementation anchor cluster is always first if (!freezeAnchorsInZeroCluster) { result.adjustClusterForAnchors(anchorIndices); } } return result; } /** * Generates clusters for a given list of tabs using precomputed embeddings or newly generated ones. * * @param {Object[]} tabList - List of tab objects to be clustered. * @param {number[][]} [precomputedEmbeddings] - Precomputed embeddings for tab titles and descriptions. * @param {number} numClusters - Number of clusters to form. * @param {Function} randFunc - Random function used for clustering initialization. * @param {number[]} [anchorIndices=[]] - Indices of anchor tabs that should be prioritized in clustering. * @param {number[]} [alreadyGroupedIndices=[]] - Indices of tabs that are already assigned to groups. * @returns {SmartTabGroupingResult} - The best clustering result based on centroid inertia. */ async generateClusters( tabList, precomputedEmbeddings, numClusters, randFunc, anchorIndices = [], alreadyGroupedIndices = [] ) { numClusters = numClusters ?? 0; const structuredData = await this._prepareTabData(tabList); // embeddings for title and description if (precomputedEmbeddings) { this.docEmbeddings = precomputedEmbeddings; } else { this.docEmbeddings = await this._generateEmbeddings( structuredData.map(a => a[EMBED_TEXT_KEY]) ); } let bestResultCluster; let bestResultDistance = 50000000.0; const NUM_RUNS = 1; for (let i = 0; i < NUM_RUNS; i++) { const curResult = this._clusterEmbeddings({ tabs: tabList, embeddings: this.docEmbeddings, k: numClusters, randomFunc: randFunc, anchorIndices, alreadyGroupedIndices, }); const distance = curResult.getCentroidInertia(); if (distance < bestResultDistance) { bestResultDistance = distance; bestResultCluster = curResult; } } return bestResultCluster; } /** * Create static cluster from a list of tabs. A single tab is Ok. Returns null for 0 tabs * @param tabs * @returns {SmartTabGroupingResult} groupingResult */ createStaticCluster(tabs) { if (!tabs) { return null; } return new SmartTabGroupingResult({ indices: [Array.from({ length: tabs.length }, (_, i) => i)], tabs, config: this.config, }); } /** * Generate model input from keywords and documents * @param {string []} keywords * @param {string []} documents */ createModelInput(keywords, documents) { if (!keywords || keywords.length === 0) { return `Topic from keywords: titles: \n${documents.join(" \n")}`; } return `Topic from keywords: ${keywords.join(", ")}. titles: \n${documents.join(" \n")}`; } /** * Add titles to a cluster in a SmartTabGroupingResult using generative tehniques * Currently this function only works with a single target group, and a separate * item that represents all other ungrouped tabs. * * In the future this may be updated to more generally find labels for a set of clusters. * @param {SmartTabGroupingResult} groupingResult The cluster we are generating the label for * @param {SmartTabGroupingResult} otherGroupingResult A 'made up' cluster representing all other tabs in the window */ async generateGroupLabels(groupingResult, otherGroupingResult = null) { const { keywords, documents } = groupingResult.getRepresentativeDocsAndKeywords( otherGroupingResult ? otherGroupingResult.getRepresentativeDocuments() : [] ); const inputArgs = this.createModelInput( keywords ? keywords[0] : [], documents ); const requestInfo = { inputArgs, runOptions: { max_length: 6, }, }; if (!this.topicEngine || this.topicEngine?.engineStatus === "closed") { this.topicEngine = await this._createMLEngine( this.config.topicGeneration ); } const request = { args: [requestInfo.inputArgs], options: requestInfo.runOptions, }; const genLabelResults = await this.topicEngine.run(request); genLabelResults.forEach((genResult, genResultIndex) => { groupingResult.clusterRepresentations[ genResultIndex ].predictedTopicLabel = ( (genResult.generated_text || "").trim() === DISSIMILAR_TAB_LABEL ? "" : genResult.generated_text || "" ).trim(); }); } /** * Generates glean metrics for ml smart tab label / topic. * This is currently called when the user saves or cancels the "suggest label" flow. * * @param {string} action "save" or "cancel" * @param {number} numTabsInGroup Number of tabs used to generate the label * @param {string} mlLabel ML generated label for the tab group * @param {string} userLabel User saved label for the tab group */ handleLabelTelemetry({ action, numTabsInGroup, mlLabel, userLabel }) { Glean.browserMlInteraction.smartTabTopic.record({ action, num_tabs_in_group: numTabsInGroup, ml_label_length: (mlLabel || "").length, user_label_length: (userLabel || "").length, levenshtein_distance: lazy.NLP.levenshtein( userLabel || "", mlLabel || "" ), }); } /** * Generates glean metrics for ml smart tab label / topic. * This is currently called when the user saves or cancels the "suggest other tabs" flow * * @param {string} action "save" or "cancel" * @param {number} numTabsInWindow Number of tabs in the current window * @param {number} numTabsInGroup Number of tabs in the current group * @param {number} numTabsSuggested Number of tabs suggested by the model * @param {number} numTabsApproved Number of tabs approved by the user * @param {number} numTabsRemoved Number of tabs removed by the user */ handleSuggestTelemetry({ action, numTabsInWindow, numTabsInGroup, numTabsSuggested, numTabsApproved, numTabsRemoved, }) { Glean.browserMlInteraction.smartTabSuggest.record({ action, num_tabs_in_window: numTabsInWindow, num_tabs_in_group: numTabsInGroup, num_tabs_suggested: numTabsSuggested, num_tabs_approved: numTabsApproved, num_tabs_removed: numTabsRemoved, }); } } export class SmartTabGroupingResult { #anchorClusterIndex = -1; // Index of cluster that has original items we're building clustering around, when building around an existing item. /** * Creates a result from indices and complete tab and embedding lists. * This may create some extra data for management later * @param indices indices of clusters (eg [[2,4], [1], [3]]_ * @param tabItems 1D array of tabs * @param embeddingItems Two dimensional array of embeddings * @param config Cluster config */ constructor({ indices = [], tabs, embeddings, config }) { this.embeddingItems = embeddings; this.config = config; this.indices = indices.filter(subArray => !!subArray.length); // Cleanup any empty clusters this.tabItems = tabs; this._buildClusterRepresentations(); } /** * Builds list of ClusterRepresentations */ _buildClusterRepresentations() { this.clusterRepresentations = this.indices.map(subClusterIndices => { const tabItemsMapped = this.tabItems && subClusterIndices.map(idx => this.tabItems[idx]); const embeddingItemsMapped = this.embeddingItems && subClusterIndices.map(idx => this.embeddingItems[idx]); return new ClusterRepresentation({ tabs: tabItemsMapped, embeddings: embeddingItemsMapped, config: this.config, }); }); } /** * Returns a list of documents for each cluster. Currently it is a list of documents picked * in no particular order. * @return {[strings]} Title and description that represent the cluster. (If no docs are in the class, then titles are returned) */ getRepresentativeDocuments() { if (!this.documents) { this.documents = this.tabItems.map( t => t[this.config.dataConfig.titleKey] ); } // set a limit of 10 for now return this.documents.slice(0, 10); } /** * Returns the keywords and documents for the cluster, computing if needed * Does not return keywods if only one document is passed to the function. * @param{string[]} otherDocuments other clusters that we'll compare against * @return keywords and documents that represent the cluster */ getRepresentativeDocsAndKeywords(otherDocuments = []) { this.documents = this.getRepresentativeDocuments(); if (!this.keywords) { const joinedDocs = this.documents.slice(0, 3).join(" "); const otherDocs = otherDocuments.join(" "); if (this.documents.length > 1) { const keywordExtractor = new KeywordExtractor(); this.keywords = keywordExtractor.fitTransform([joinedDocs, otherDocs]); } else { this.keywords = []; } } return { keywords: this.keywords, documents: this.documents }; } setAnchorClusterIndex(index) { this.#anchorClusterIndex = index; } /** * Get the cluster we originally are grouping around (finding additinoal item) * @returns ClusterRepresentation */ getAnchorCluster() { if (this.#anchorClusterIndex === -1) { return null; } return this.clusterRepresentations[this.#anchorClusterIndex]; } /** * Given the indices that we were clustering around, make sure they are are all in the target grouping * Our generic k-means clustering might have them in separate groups */ adjustClusterForAnchors(anchorIndices) { if (!anchorIndices.length) { return; } const anchorSet = new Set(anchorIndices); for (let i = 0; i < this.indices.length; i++) { if (i === this.#anchorClusterIndex) { continue; } this.indices[i] = this.indices[i].filter(item => { if (anchorSet.has(item)) { this.indices[this.#anchorClusterIndex].push(item); return false; } return true; }); } this._buildClusterRepresentations(); } /** * Prints information about the cluster */ printClusters() { for (let cluster of this.clusterRepresentations) { cluster.print(); } } /** * Computes the inertia of the cluster which is the sum of square total distance. * @returns {number} */ getCentroidInertia() { let runningTotalDistance = 0; this.clusterRepresentations.forEach(rep => { runningTotalDistance += rep.computeTotalSquaredCentroidDistance(); }); return runningTotalDistance; } /** * Converts a cluster representation to a flat list of tabs, with clusterID key in each * tab representing the id of the cluster it was part of. * @returns {[Object]} */ _flatMapItemsInClusters() { return this.clusterRepresentations.reduce((result, clusterRep) => { const annotatedTabs = clusterRep.tabs.map(a => { let c = {}; Object.assign(c, a); c.clusterID = clusterRep.clusterID; return c; }); return result.concat(annotatedTabs); }, []); } /** * Get rand score which describes the accuracy versus a user labeled * annotation on the dataset. Requires the dataset to be labeled. * @param labelKey Key in the tabs that represent a unique label ID for the cluster. * @returns {number} The rand score. */ getRandScore(labelKey = "annotatedLabel") { const combinedItems = this._flatMapItemsInClusters(); return computeRandScore(combinedItems, "clusterID", labelKey); } /** * Get accuracy for a specific cluster * @param labelKey Key in the tabs that represent a unique label ID for the cluster. * @param clusterValue is the cluster we are comparing * @returns {number} The rand score. */ getAccuracyStatsForCluster(labelKey = "annotatedLabel", clusterValue) { const combinedItems = this._flatMapItemsInClusters(); let keyClusterId = combinedItems.find( a => a[labelKey] === clusterValue ).clusterID; let truePositives = 0, trueNegatives = 0, falseNegatives = 0, falsePositives = 0; combinedItems.forEach(item => { const sameLabel = item[labelKey] === clusterValue; const sameCluster = item.clusterID === keyClusterId; if (sameLabel && sameCluster) { truePositives++; } if (!sameLabel && !sameCluster) { trueNegatives++; } if (sameLabel && !sameCluster) { falseNegatives++; } if (!sameLabel && sameCluster) { falsePositives++; } }); return getAccuracyStats({ truePositives, trueNegatives, falsePositives, falseNegatives, }); } } /** * Utility function to generate a random ID string * @param len Length of the string * @returns {string} */ function genHexString(len) { const hex = "0123456789ABCDEF"; let output = ""; for (let i = 0; i < len; ++i) { output += hex.charAt(Math.floor(Math.random() * hex.length)); } return output; } class EmbeddingCluster { constructor({ tabs, embeddings, centroid }) { this.embeddings = embeddings; this.centroid = centroid || (embeddings && computeCentroidFrom2DArray(this.embeddings)); this.tabs = tabs; } /** * @returns total sum euclidan squared distance of each item from cluster's centroid */ computeTotalSquaredCentroidDistance() { let totalDistance = 0; if (this.embeddings.length === 0) { return 0; } this.embeddings.forEach(embedding => { totalDistance += euclideanDistance(this.centroid, embedding, true); }); return totalDistance; } /** * Returns number of items in the cluster * @returns {int} */ numItems() { return this.tabs.length; } } /** * Represents a single cluster with additional saved metadata */ export class ClusterRepresentation extends EmbeddingCluster { constructor({ tabs, embeddings, centroid, config }) { super({ tabs, embeddings, centroid }); this.config = config; this.predictedTopicLabel = null; this.annotatedTopicLabel = null; this.userEditedTopicLabel = null; this.representativeText = null; this.keywords = null; this.documents = null; this.clusterID = genHexString(10); } /** * Returns the representative text for a cluster, computing it if needed */ getRepresentativeText() { if (!this.representativeText) { this.representativeText = this._generateRepresentativeText(); } return this.representativeText; } /** * Returns representative text for a cluster. * For this in initial implementation it simply returns title from a few tabs * @returns {string} * @private */ _generateRepresentativeText() { let text = ""; const titleKey = this.config.dataConfig.titleKey; for (const tab of this.tabs.slice(0, 3)) { text += `\n${tab[titleKey]}`; } return text; } print() { // Add console log for debugging } }