#[macro_use] extern crate serde_derive; extern crate bincode; extern crate serde; extern crate byteorder; use std::fmt::Debug; use std::collections::HashMap; use std::ops::Deref; use bincode::refbox::{RefBox, StrBox, SliceBox}; use bincode::{Infinite, Bounded}; use bincode::{serialized_size, ErrorKind, Result}; use bincode::endian_choice::{serialize, deserialize}; use bincode::serialize as serialize_little; use bincode::deserialize as deserialize_little; use bincode::deserialize_from as deserialize_from_little; fn the_same(element: V) where V: serde::Serialize+serde::Deserialize+PartialEq+Debug+'static { // Make sure that the bahavior isize correct when wrapping with a RefBox. fn ref_box_correct(v: &V) -> bool where V: serde::Serialize + serde::Deserialize + PartialEq + Debug + 'static { let rf = RefBox::new(v); let encoded = serialize_little(&rf, Infinite).unwrap(); let decoded: RefBox<'static, V> = deserialize_little(&encoded[..]).unwrap(); decoded.take().deref() == v } let size = serialized_size(&element); { let encoded = serialize_little(&element, Infinite); let encoded = encoded.unwrap(); let decoded = deserialize_little(&encoded[..]); let decoded = decoded.unwrap(); assert_eq!(element, decoded); assert_eq!(size, encoded.len() as u64); assert!(ref_box_correct(&element)); } { let encoded = serialize::<_, _, byteorder::BigEndian>(&element, Infinite); let encoded = encoded.unwrap(); let decoded = deserialize::<_, byteorder::BigEndian>(&encoded[..]); let decoded = decoded.unwrap(); assert_eq!(element, decoded); assert_eq!(size, encoded.len() as u64); assert!(ref_box_correct(&element)); } } #[test] fn test_numbers() { // unsigned positive the_same(5u8); the_same(5u16); the_same(5u32); the_same(5u64); the_same(5usize); // signed positive the_same(5i8); the_same(5i16); the_same(5i32); the_same(5i64); the_same(5isize); // signed negative the_same(-5i8); the_same(-5i16); the_same(-5i32); the_same(-5i64); the_same(-5isize); // floating the_same(-100f32); the_same(0f32); the_same(5f32); the_same(-100f64); the_same(5f64); } #[test] fn test_string() { the_same("".to_string()); the_same("a".to_string()); } #[test] fn test_tuple() { the_same((1isize,)); the_same((1isize,2isize,3isize)); the_same((1isize,"foo".to_string(),())); } #[test] fn test_basic_struct() { #[derive(Serialize, Deserialize, PartialEq, Debug)] struct Easy { x: isize, s: String, y: usize } the_same(Easy{x: -4, s: "foo".to_string(), y: 10}); } #[test] fn test_nested_struct() { #[derive(Serialize, Deserialize, PartialEq, Debug)] struct Easy { x: isize, s: String, y: usize } #[derive(Serialize, Deserialize, PartialEq, Debug)] struct Nest { f: Easy, b: usize, s: Easy } the_same(Nest { f: Easy {x: -1, s: "foo".to_string(), y: 20}, b: 100, s: Easy {x: -100, s: "bar".to_string(), y: 20} }); } #[test] fn test_struct_newtype() { #[derive(Serialize, Deserialize, PartialEq, Debug)] struct NewtypeStr(usize); the_same(NewtypeStr(5)); } #[test] fn test_struct_tuple() { #[derive(Serialize, Deserialize, PartialEq, Debug)] struct TubStr(usize, String, f32); the_same(TubStr(5, "hello".to_string(), 3.2)); } #[test] fn test_option() { the_same(Some(5usize)); the_same(Some("foo bar".to_string())); the_same(None::); } #[test] fn test_enum() { #[derive(Serialize, Deserialize, PartialEq, Debug)] enum TestEnum { NoArg, OneArg(usize), Args(usize, usize), AnotherNoArg, StructLike{x: usize, y: f32} } the_same(TestEnum::NoArg); the_same(TestEnum::OneArg(4)); //the_same(TestEnum::Args(4, 5)); the_same(TestEnum::AnotherNoArg); the_same(TestEnum::StructLike{x: 4, y: 3.14159}); the_same(vec![TestEnum::NoArg, TestEnum::OneArg(5), TestEnum::AnotherNoArg, TestEnum::StructLike{x: 4, y:1.4}]); } #[test] fn test_vec() { let v: Vec = vec![]; the_same(v); the_same(vec![1u64]); the_same(vec![1u64,2,3,4,5,6]); } #[test] fn test_map() { let mut m = HashMap::new(); m.insert(4u64, "foo".to_string()); m.insert(0u64, "bar".to_string()); the_same(m); } #[test] fn test_bool() { the_same(true); the_same(false); } #[test] fn test_unicode() { the_same("å".to_string()); the_same("aåååååååa".to_string()); } #[test] fn test_fixed_size_array() { the_same([24u32; 32]); the_same([1u64, 2, 3, 4, 5, 6, 7, 8]); the_same([0u8; 19]); } #[test] fn deserializing_errors() { fn isize_invalid_deserialize(res: Result) { match res.map_err(|e| *e) { Err(ErrorKind::InvalidEncoding{..}) => {}, Err(ErrorKind::Custom(ref s)) if s.contains("invalid encoding") => {}, Err(ErrorKind::Custom(ref s)) if s.contains("invalid value") => {}, other => panic!("Expecting InvalidEncoding, got {:?}", other), } } isize_invalid_deserialize(deserialize_little::(&vec![0xA][..])); isize_invalid_deserialize(deserialize_little::(&vec![1, 0, 0, 0, 0, 0, 0, 0, 0xFF][..])); // Out-of-bounds variant #[derive(Serialize, Deserialize, Debug)] enum Test { One, Two, }; isize_invalid_deserialize(deserialize_little::(&vec![0, 0, 0, 5][..])); isize_invalid_deserialize(deserialize_little::>(&vec![5, 0][..])); } #[test] fn too_big_deserialize() { let serialized = vec![0,0,0,3]; let deserialized: Result = deserialize_from_little::<_, _, _>(&mut &serialized[..], Bounded(3)); assert!(deserialized.is_err()); let serialized = vec![0,0,0,3]; let deserialized: Result = deserialize_from_little::<_, _, _>(&mut &serialized[..], Bounded(4)); assert!(deserialized.is_ok()); } #[test] fn char_serialization() { let chars = "Aa\0☺♪"; for c in chars.chars() { let encoded = serialize_little(&c, Bounded(4)).expect("serializing char failed"); let decoded: char = deserialize_little(&encoded).expect("deserializing failed"); assert_eq!(decoded, c); } } #[test] fn too_big_char_deserialize() { let serialized = vec![0x41]; let deserialized: Result = deserialize_from_little::<_, _, _>(&mut &serialized[..], Bounded(1)); assert!(deserialized.is_ok()); assert_eq!(deserialized.unwrap(), 'A'); } #[test] fn too_big_serialize() { assert!(serialize_little(&0u32, Bounded(3)).is_err()); assert!(serialize_little(&0u32, Bounded(4)).is_ok()); assert!(serialize_little(&"abcde", Bounded(8 + 4)).is_err()); assert!(serialize_little(&"abcde", Bounded(8 + 5)).is_ok()); } #[test] fn test_proxy_encoded_size() { assert!(serialized_size(&0u8) == 1); assert!(serialized_size(&0u16) == 2); assert!(serialized_size(&0u32) == 4); assert!(serialized_size(&0u64) == 8); // length isize stored as u64 assert!(serialized_size(&"") == 8); assert!(serialized_size(&"a") == 8 + 1); assert!(serialized_size(&vec![0u32, 1u32, 2u32]) == 8 + 3 * (4)) } #[test] fn test_serialized_size() { assert!(serialized_size(&0u8) == 1); assert!(serialized_size(&0u16) == 2); assert!(serialized_size(&0u32) == 4); assert!(serialized_size(&0u64) == 8); // length isize stored as u64 assert!(serialized_size(&"") == 8); assert!(serialized_size(&"a") == 8 + 1); assert!(serialized_size(&vec![0u32, 1u32, 2u32]) == 8 + 3 * (4)) } #[test] fn encode_box() { the_same(Box::new(5)); } #[test] fn test_refbox_serialize() { let large_object = vec![1u32,2,3,4,5,6]; let mut large_map = HashMap::new(); large_map.insert(1, 2); #[derive(Serialize, Deserialize, Debug)] enum Message<'a> { M1(RefBox<'a, Vec>), M2(RefBox<'a, HashMap>) } // Test 1 { let serialized = serialize_little(&Message::M1(RefBox::new(&large_object)), Infinite).unwrap(); let deserialized: Message<'static> = deserialize_from_little(&mut &serialized[..], Infinite).unwrap(); match deserialized { Message::M1(b) => assert!(b.take().deref() == &large_object), _ => assert!(false) } } // Test 2 { let serialized = serialize_little(&Message::M2(RefBox::new(&large_map)), Infinite).unwrap(); let deserialized: Message<'static> = deserialize_from_little(&mut &serialized[..], Infinite).unwrap(); match deserialized { Message::M2(b) => assert!(b.take().deref() == &large_map), _ => assert!(false) } } } #[test] fn test_strbox_serialize() { let strx: &'static str = "hello world"; let serialized = serialize_little(&StrBox::new(strx), Infinite).unwrap(); let deserialized: StrBox<'static> = deserialize_from_little(&mut &serialized[..], Infinite).unwrap(); let stringx: String = deserialized.take(); assert!(strx == &stringx[..]); } #[test] fn test_slicebox_serialize() { let slice = [1u32, 2, 3 ,4, 5]; let serialized = serialize_little(&SliceBox::new(&slice), Infinite).unwrap(); let deserialized: SliceBox<'static, u32> = deserialize_from_little(&mut &serialized[..], Infinite).unwrap(); { let sb: &[u32] = &deserialized; assert!(slice == sb); } let vecx: Vec = deserialized.take(); assert!(slice == &vecx[..]); } #[test] fn test_multi_strings_serialize() { assert!(serialize_little(&("foo", "bar", "baz"), Infinite).is_ok()); } /* #[test] fn test_oom_protection() { use std::io::Cursor; struct FakeVec { len: u64, byte: u8 } let x = bincode::rustc_serialize::encode(&FakeVec { len: 0xffffffffffffffffu64, byte: 1 }, bincode::SizeLimit::Bounded(10)).unwrap(); let y : Result, _> = bincode::rustc_serialize::decode_from(&mut Cursor::new(&x[..]), bincode::SizeLimit::Bounded(10)); assert!(y.is_err()); }*/ #[test] fn path_buf() { use std::path::{Path, PathBuf}; let path = Path::new("foo").to_path_buf(); let serde_encoded = serialize_little(&path, Infinite).unwrap(); let decoded: PathBuf = deserialize_little(&serde_encoded).unwrap(); assert!(path.to_str() == decoded.to_str()); } #[test] fn bytes() { use serde::bytes::Bytes; let data = b"abc\0123"; let s = serialize_little(&data, Infinite).unwrap(); let s2 = serialize_little(&Bytes::new(data), Infinite).unwrap(); assert_eq!(s[..], s2[8..]); } #[test] fn endian_difference() { let x = 10u64; let little = serialize_little(&x, Infinite).unwrap(); let big = serialize::<_, _, byteorder::BigEndian>(&x, Infinite).unwrap(); assert_ne!(little, big); }