This avoids duplicating the logic from SimplePackager to find base
directories, and fixes some cases where the l10n repack code wouldn't
find them properly.
Bug 910660 added a consistency check that rejects cases where a manifest
inside a directory detected as being the base of an addon is included from
outside the addon. Unfortunately, this triggered false positives when
a manifest is included from within the addon, but just happens to be at
the top-level of that addon.
Back when mozpack.path was added, it was used as:
import mozpack.path
mozpack.path.func()
Nowadays, the common idiom is:
import mozpack.path as mozpath
mozpath.func()
because it's shorter.
$ git grep mozpath\\. | wc -l
423
$ git grep mozpack.path\\. | wc -l
123
This change was done with:
$ git grep -l mozpack.path\\. | xargs sed -i 's/mozpack\.path\./mozpath./g'
$ git grep -l 'import mozpack.path$' | xargs sed -i 's/import mozpack.path$/\0 as mozpath/'
$ (pat='import mozpack.path as mozpath'; git grep -l "$pat" | xargs sed -i "1,/$pat/b;/$pat/d")
Some file types, such as XPTFile, read their associated data during the
copy. In the case of XPTFiles, several original files are linked together
in one destination file. When a FileCopier is used in-place, those
original files are removed before XPTFile.copy is invoked, so XPTFile.copy
fails.
Generally speaking, there are many other reasons why FileCopier can fail
in-place, but the only active use of this mode is l10n repack code, which
actually doesn't do much of the dangerous uses. However, it can end up
linking XPTFiles for some reason, which fails for the reasons given above.
The Android ARchive contains the compiled Gecko libraries that Firefox
for Android interfaces to. It does not contain the Gecko resources
(the omnijar, omni.ja) nor the compiled Java code (classes.dex).
This also uploads metadata and sha1 hashes for future consumption by
Maven and/or Ivy dependency managers. In some brave future world,
we'll work out exactly what that looks like; for now, this solves a
storage problem (each .aar file is ~20MB) and it's possible to point
Gradle directly at the uploaded Ivy metadata and artifacts.
Now that we have proper moz.build objects for GENERATED_FILES, we can
add 'script' flags and 'args' flags in moz.build for select
GENERATED_FILES. We restrict 'args' to being filenames for ease of
implementing checks for file existence, and many (all?) of the examples
of file generation throughout the tree don't need arbitrary strings or
Python data.
This patch is mostly useful for being able to see these changes
independently of the major changes to GENERATED_FILES. We are going to
need proper moz.build objects for GENERATED_FILES when we add the
ability to define scripts and arguments for them, so we might as well do
that first.
With the previous changes, we can now tell Visual Studio about the
actual unified files, rather than the files that are #include'd in them.
I believe this is much closer to what Visual Studio wants to see, and
enables things like Intellisense to work properly.
CommonBackend is where the writing of the unified files belong, since
that's an operation common to all backends. A special hook into
subclasses is used to enable subclass-specific processing of
UnifiedSources.
UnifiedSources will be processed outside of consume_object, so we need
some way of accessing the backend file for an object outside of
consume_object as well.
UnifiedSources, not the recursivemake backend, should be responsible for
figuring out what unified files to generate, and what those unified
files should contain.
Generating the list of idl deps to generate an xpt from its dependency list
makes us give all _previous_ dependencies, inherited from the .deps makefiles.
This leads to removed files being listed on xpidl-process.py command line, and
the command subsequently failing.
Instead, use generated lists of idl dependencies. At the same time, lighten the
generated Makefile further by not emitting xpt dependencies on their containing
directory, and instead generating it from the $xpt_files list.
This brings down the Makefile size from 100k to 38k.
The previous debugger was setting a breakpoint in the mach dispatcher.
This required users to step into the main function to be called into.
Using pdb.runcall(), the debugger starts at the first line in the
executed command, which is far more useful.
Similar to the changes made for IPDL files, this commit moves all of the
non-makefile related logic for WebIDL files out of the recursive make
backend and into the common build backend. Derivative backends that
would like to do interesting things with WebIDL files now need to
implement _handle_webidl_build, which takes more parameters, but should
ideally require less duplication of logic.
After a bunch of tiny changes, we're finally ready to make real
progress. We can now move the grouping of the generated IDPL C++ files
and the actual writing of the unified files for them into the common
build backend. Derivative backends now only have to concern themselves
with adding the particular logic that compiling those files requires.
We'll need to write out unified files for multiple backends, not just
the recursive make one. Put that logic someplace where all build
backends can access it.
_add_unified_build_rules shouldn't be in the business of determining how
to group files into their unified files. That logic belongs in the
caller of _add_unified_build_rules. Once that's done, the logic for
determining how to group files can migrate out of the recursive make
bakend.
Nothing about writing unified files is specific to the recursive make
backend, and if we want to write the unified files for IPDL and WebIDL
files, we'll need this functionality available in the common build
backend.
RecursiveMakeBackend._group_unified_files doesn't contain any
functionality specific to the recursive make backend. We would also
like to move the unification of generated IPDL and WebIDL source files
into the common build backend. Moving _group_unified_files into the
common build backend would be the logical place for it, but the frontend
should also be able to handle unifying files so that backends don't have
to duplicate logic for UNIFIED_FILES. Therefore, we choose to move it
to mozbuild.util as its final resting place.
This handles:
list.0=A
list.1=B
list.sublist.0=C
so that
list=>[A, B]
list.sublist=>[C]
and
dict=default
dict.key1=A
dict.key2=B
so that
dict=>{key1:A, key2:B}
dict=>default