Currently endTime is calculated when getComputedTiming() is called. As a
result, the value returned there doesn't necessarily reflect what we are using
in the model. It would be more simple, consistent and useful if we simply
calculate this as part of GetComputedTimingAt and use it both internally and in
the result to getComputedTiming().
In some circumstances when composing style, we tweak the time of the animation
before telling the effect to compose style. This is to avoid visual flicker in
certain situations where the main thread progress is being synchronized with an
animation running on the compositor.
In the past, effects would store their latest sample time locally so when
tweaking the animation time, we would need to call UpdateEffect() after tweaking
the time, and then again after restoring it as otherwise the style composed by
the effect would not reflect the adjusted time.
Now, however, effect's always query their animation for the time so this is no
longer necessary. Furthermore, the actions triggered by UpdateEffect are not
desirable in this case because they can, amongst other things, cause the
associated EffectSet to be destroyed and recreated.
Specifically, Animation::UpdateEffect() calls
KeyframeEffectReadOnly::NotifyAnimationTimingUpdated() which:
* Calls UpdateTargetRegistration which can trigger EffectSet
destruction/creation which is undesirable in this case because we intend to
restore whatever changes we make to the Animation's state and deleting and
recreating the EffectSet will cause any pointers to it to dangle.
* Cause us to possibly reset the "is running on compositor" status.
This too is undesirable since we intend to restore the state of the
Animation immediately after tweaking the hold time so we don't want to
act as if any state has changed.
* Similarly for marking the cascade as possibly needing an update or
requesting a restyle.
In summary, all the actions performed by NotifyAnimationTimingUpdated are
unnecessary and undesirable in this situation where we are temporarily tweaking
an Animation's current time only to restore it immediately afterwards since the
actions are all involved with recognizing actual changes in state.
This flag is no longer needed because in bug 1232563 we introduced a more
thorough optimization that detects when the animation is not changing by
comparing the progress value between samples and avoids requesting restyles
when it does not change.
This is in preparation for moving RequestRestyle to EffectCompositor (and
because we'll run into compile issues if we don't since AnimationCommon.h
includes too many interdependent definitions).
When requesting restyles we take special care to detect when an animation has
newly finished so we perform the necessary restyle to represent the fill state.
However, we should really explicitly pull the animation off the layer at this
point by requesting a layer update. (That is, when an animation is
newly-finished we should use RestyleType::Layer instead of
RestyleType::Standard. Currently we just use RestyleType::Standard.)
In this bug we plan to move restyle requests down to the effect (since it is
the *effect* that is restyled). However, only the Animation has the notion of
"finished" or not so we detect this particular case in the Animation and
request the layer update there. We already request layer updates in the
Animation for other situations such as pausing so doing *layer* updates in the
Animation and regular restyles in the effect is not inconsistent.
This patch also tweaks test_animations_omta.html since it was previously
erroneously testing that a finished animation was still running on the
compositor.
This is to align with the existing GetAnimationCollection method that takes
a frame. Also, by making this name more specific hopefully it will be used less
since we are trying to move as much code as possible over to using EffectSet
instead of AnimationCollection.
If this patch (and part 9) is an overkill to throttle animations having both
of properties, one can be run on compositor and another can not be, a test
case in test_running_on_compositor[1] will fail.
The test case is for an animation which has transform and background-color
properties.
Animation::CanThrottle() returns true
(then, AnimationCollection::CanPerformOnCompositorThread() returns false)
on current trunk in the test case.
Animation::CanThrottle() returns false with this patch in the test case.
If the test passes, it proves the transform animation is running on compositor
in both cases.
[1] http://hg.mozilla.org/mozilla-central/file/6c7c983bce46/dom/animation/test/chrome/test_running_on_compositor.html#l77
The Animation.pause() method operates asynchronously since, if the animation is
currently running on the compositor, we should wait for the animation to stop
on the compositor before establishing the pause time. Otherwise, if the
compositor is ahead of the main thread and we use the main thread's notion of
the current time to establish the pause time, the animation will jump backwards
when we take it off the compositor.
This pause time is represented using the "hold time".
However, when we have a finished animation, its current time is not advancing
but rather its current time is fixed to its end time. This too is represented
using the hold time. As a result, if we pause a finished animation we should
not update its hold time (by calculating the current time from the start time)
but just continue to use the existing hold time. This is true of any other
situation where we might have set the hold time before or during pausing.
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
Animation::Tick contains special handling to cope with pending ready times
that are in the future. This was originally introduced to cope with the
situation where we are called multiple times per refresh-driver tick.
As of bug 1195180, Animation::Tick should no longer be called multiple
times per refresh driver tick. It would seem, therefore, that we no longer
need to check for a future time. However, since introducing this check, the
vsync refresh driver timer has been added which means that we can still have
a recorded time from TimeStamp::Now that is ahead of the vsync time used to
update the refresh driver. In that case, however, rather than waiting for the
next tick, we should simply clamp that pending ready time to the refresh driver
time and finish pending immediately.
This patch also updates one of the tests for reversing. With this updated
behavior we can sometimes arrive at a situation where when an Animation starts
and its ready promise resolves, its currentTime is still 0. If we call
reverse() at this point on an animation with an infinite active duration it
should throw an InvalidStateError. To avoid this situation, this test makes
sure we wait an extra frame before calling reverse().
This patch renames AnimationCollection::mNeedsRefreshes to indicate that it
no longer has any relationship to whether or not we observe the refresh driver.
We need to do this so effects can query their owning animation for the current
time and avoid falling out of sync. Furthermore, this pointer is needed
for a number of other bugs (e.g. bug 1166500 comment 12, or bug 1190235)
anyway.
Now that DocumentTimeline observes the refresh driver we can use regular
ticks to remove unnecessary animations.
We do this because in a subsequent patch, in order to provide deterministic
enumeration order when ticking animations, we will store animations in an array.
Removing an arbitrary element from an nsTArray is O(n) since we have to search
for the array index first, or O(log n) if we keep the array sorted. If we
destroy a subtree containing n animations, the operation effectively becomes
O(n^2), or, if we keep the array sorted, O(n log n). By destroying during a
tick when we are already iterating over the array, however, we will be able
to do this much more efficiently.
Whether an animation is newly associated with a timeline, or is disassociated
from a timeline, or if it merely has its timing updated, the behavior
implemented in this patch is to simply make sure we are observing the refresh
driver and deal with the animation on the next tick.
It might seem that we could be a lot more clever about this and, for example, if
an animation reports NeedsTicks() == false, not start observing the refresh
driver. There are various edge cases however that need to be taken into account.
For example, if a CSS animation is finished (IsRelevant() == false so that
animation will have been removed from the timeline), and paused
(NeedsTicks() == false), and we seek it back to the point where it is relevant
again, we actually need to observe the refresh driver so that it can dispatch an
animationstart event on the next tick. A test case in a subsequent patch tests
this specific situation.
We could possibly add logic to detect if we need to fire events on the next tick
but the complexity does not seem warranted given that even if we unnecessarily
start observing the refresh driver, we will stop watching it on the next tick.
This patch removes some rather lengthy comments from
AnimationTiming::UpdateTiming. This is, in part, because of the behavior
described above that makes these comments no longer relevant. Other parts are
removed because the Web Animations specification has been updated such that a
timeline becoming inactive now pauses the animation[1] so that the issue
regarding detecting timelines becoming active/inactive no longer applies
since animations attached to an inactive timeline remain "relevant".
[1] https://w3c.github.io/web-animations/#responding-to-a-newly-inactive-timeline
This patch adds a utility method to Animation which takes a time in the
same time space as "current time", i.e. "animation time" and convert it to
a TimeStamp. Subsequent patches in this series will use this method to
take the time when an event was scheduled to occur and convert it to a
TimeStamp so it can be compared with other event times. This allows us to
dispatch events in the order they would have fired given an infinitely
frequent sample rate.
The Web Animations specification has replaced the term "sequence number" with
references to a global animation list. This patch applies similar naming
to our animation structures.
We currently determine if we need refresh driver ticks when composing style
but sometimes we might not need ticks for composing style but we might need
one more tick in order to queue a final end event. Currently, this doesn't
seem to be a problem because FlushAnimations calls Animation::Tick where we
queue up events. When we remove the call to Animation::Tick from
FlushAnimations in order to make FlushAnimations purely responsible for
posting restyles, however, we will create a situation where we might mark an
animation collection as no longer needing refreshes and not simultaneously
queueing the corresponding event. If another animation collection is deleted in
the meantime we may trigger the code that causes us to disassociate from the
refresh driver and the corresponding event will never be dispatched.
Long-term (bug 1195180) we will check if it we can stop observing the refresh
driver and queue events in the same step. Until then, this patch adds a method
to detect this particular situation and uses it to avoid unregistering from
the refresh driver while we still have end events to queue.
Now KeyframeEffect.SetTiming() updates the owning animation timing and relavance, so
we don't need to call each methods respectively for the animation any more.
We currently have a series of methods that clobber various bits of animation
state to force animations on layers to be updated. This aligns closely with
the restyle code introduced in this patch series.
By re-using RequestRestyle when updating animations on layers, not only should
we be able to simplify the code somewhat but, in future, we should also be able
to have Animation objects use the same mechanism to update layers during
a regular tick.
For example, currently we have a bug where when an animation starts after
a delay with the same value as the backwards fill then we don't send the
animation to the compositor right away (see
https://dxr.mozilla.org/mozilla-central/rev/d6ea652c579992daa9041cc9718bb7c6abefbc91/layout/style/test/test_animations_omta.html#287).
By adding this Restyle::Layer value we should be able to fix that in future.