Bug 1912019 - Add a modified dependency to allocator_api2. r=supply-chain-reviewers
See also https://github.com/zakarumych/allocator-api2/issues/10 This patch was produced with the following steps: - Vendor allocator-api2 normally. - Modify the vendored source in third_party/rust. - Stop exporting the Box implementation. - Change the version to 0.2.999. - Run cargo update -p allocator-api2 --precise 0.2.999 Differential Revision: https://phabricator.services.mozilla.com/D218729
This commit is contained in:
8
Cargo.lock
generated
8
Cargo.lock
generated
@@ -37,6 +37,13 @@ dependencies = [
|
|||||||
"memchr",
|
"memchr",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "allocator-api2"
|
||||||
|
version = "0.2.999"
|
||||||
|
dependencies = [
|
||||||
|
"serde",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "alsa"
|
name = "alsa"
|
||||||
version = "0.8.1"
|
version = "0.8.1"
|
||||||
@@ -6698,6 +6705,7 @@ dependencies = [
|
|||||||
name = "webrender"
|
name = "webrender"
|
||||||
version = "0.62.0"
|
version = "0.62.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
|
"allocator-api2",
|
||||||
"bincode",
|
"bincode",
|
||||||
"bitflags 2.6.0",
|
"bitflags 2.6.0",
|
||||||
"build-parallel",
|
"build-parallel",
|
||||||
|
|||||||
@@ -222,3 +222,5 @@ webext-storage = { git = "https://github.com/mozilla/application-services", rev
|
|||||||
# Patch `gpu-descriptor` 0.3.0 to remove unnecessary `allocator-api2` dep.:
|
# Patch `gpu-descriptor` 0.3.0 to remove unnecessary `allocator-api2` dep.:
|
||||||
# Still waiting for the now-merged <https://github.com/zakarumych/gpu-descriptor/pull/40> to be released.
|
# Still waiting for the now-merged <https://github.com/zakarumych/gpu-descriptor/pull/40> to be released.
|
||||||
gpu-descriptor = { git = "https://github.com/zakarumych/gpu-descriptor", rev = "7b71a4e47c81903ad75e2c53deb5ab1310f6ff4d" }
|
gpu-descriptor = { git = "https://github.com/zakarumych/gpu-descriptor", rev = "7b71a4e47c81903ad75e2c53deb5ab1310f6ff4d" }
|
||||||
|
|
||||||
|
allocator-api2 = { path = "third_party/rust/allocator-api2" }
|
||||||
|
|||||||
10
gfx/wr/Cargo.lock
generated
10
gfx/wr/Cargo.lock
generated
@@ -23,6 +23,15 @@ dependencies = [
|
|||||||
"memchr",
|
"memchr",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "allocator-api2"
|
||||||
|
version = "0.2.18"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "5c6cb57a04249c6480766f7f7cef5467412af1490f8d1e243141daddada3264f"
|
||||||
|
dependencies = [
|
||||||
|
"serde",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "android_log-sys"
|
name = "android_log-sys"
|
||||||
version = "0.2.0"
|
version = "0.2.0"
|
||||||
@@ -3067,6 +3076,7 @@ dependencies = [
|
|||||||
name = "webrender"
|
name = "webrender"
|
||||||
version = "0.62.0"
|
version = "0.62.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
|
"allocator-api2",
|
||||||
"bincode",
|
"bincode",
|
||||||
"bitflags 2.4.2",
|
"bitflags 2.4.2",
|
||||||
"build-parallel",
|
"build-parallel",
|
||||||
|
|||||||
@@ -57,6 +57,7 @@ firefox-on-glean = { version = "0.1.0", optional = true }
|
|||||||
swgl = { path = "../swgl", optional = true }
|
swgl = { path = "../swgl", optional = true }
|
||||||
topological-sort = "0.1"
|
topological-sort = "0.1"
|
||||||
peek-poke = { version = "0.3", path = "../peek-poke" }
|
peek-poke = { version = "0.3", path = "../peek-poke" }
|
||||||
|
allocator-api2 = { version = "0.2.18", features = ["alloc", "serde"] }
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
mozangle = "0.3.3"
|
mozangle = "0.3.3"
|
||||||
|
|||||||
@@ -552,6 +552,11 @@ who = "Mike Hommey <mh+mozilla@glandium.org>"
|
|||||||
criteria = "safe-to-deploy"
|
criteria = "safe-to-deploy"
|
||||||
delta = "0.7.18 -> 0.7.20"
|
delta = "0.7.18 -> 0.7.20"
|
||||||
|
|
||||||
|
[[audits.allocator-api2]]
|
||||||
|
who = "Nicolas Silva <nical@fastmail.com>"
|
||||||
|
criteria = "safe-to-deploy"
|
||||||
|
version = "0.2.18"
|
||||||
|
|
||||||
[[audits.alsa]]
|
[[audits.alsa]]
|
||||||
who = "Mike Hommey <mh+mozilla@glandium.org>"
|
who = "Mike Hommey <mh+mozilla@glandium.org>"
|
||||||
criteria = "safe-to-deploy"
|
criteria = "safe-to-deploy"
|
||||||
|
|||||||
@@ -19,6 +19,10 @@ url = "https://raw.githubusercontent.com/divviup/libprio-rs/main/supply-chain/au
|
|||||||
[imports.mozilla]
|
[imports.mozilla]
|
||||||
url = "https://raw.githubusercontent.com/mozilla/supply-chain/main/audits.toml"
|
url = "https://raw.githubusercontent.com/mozilla/supply-chain/main/audits.toml"
|
||||||
|
|
||||||
|
[policy.allocator-api2]
|
||||||
|
audit-as-crates-io = true
|
||||||
|
notes = "This is the upstream code without the Box implementation which may have a soundness issue."
|
||||||
|
|
||||||
[policy.any_all_workaround]
|
[policy.any_all_workaround]
|
||||||
audit-as-crates-io = true
|
audit-as-crates-io = true
|
||||||
notes = "This is the upstream code plus the ARM intrinsics workaround from qcms, see bug 1882209."
|
notes = "This is the upstream code plus the ARM intrinsics workaround from qcms, see bug 1882209."
|
||||||
|
|||||||
@@ -1,6 +1,10 @@
|
|||||||
|
|
||||||
# cargo-vet imports lock
|
# cargo-vet imports lock
|
||||||
|
|
||||||
|
[[unpublished.allocator-api2]]
|
||||||
|
version = "0.2.999"
|
||||||
|
audited_as = "0.2.18"
|
||||||
|
|
||||||
[[publisher.aho-corasick]]
|
[[publisher.aho-corasick]]
|
||||||
version = "1.1.0"
|
version = "1.1.0"
|
||||||
when = "2023-09-18"
|
when = "2023-09-18"
|
||||||
|
|||||||
1
third_party/rust/allocator-api2/.cargo-checksum.json
vendored
Normal file
1
third_party/rust/allocator-api2/.cargo-checksum.json
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
{"files":{"CHANGELOG.md":"886f8c688db0c22d24b650df0dc30a39d05d54d0e562c00d9574bf31cbf73251","Cargo.toml":"8c0d2ca1b5a6063aedcd462337eeb4dfb755d81e8d132fe810419689e45eef42","LICENSE-APACHE":"20fe7b00e904ed690e3b9fd6073784d3fc428141dbd10b81c01fd143d0797f58","LICENSE-MIT":"36516aefdc84c5d5a1e7485425913a22dbda69eb1930c5e84d6ae4972b5194b9","README.md":"7bf09e77c1d8e9292992b717d88e33d031439aa31dc9e7bb617464270519b051","src/lib.rs":"c937309febe24f97bc637650137311d5b8097b8574b0e973f4d6fb591c3448f7","src/nightly.rs":"fcff4d236e23bc95b1ce2c00140807ba3698cc01233d910d65d74986bb36f161","src/stable/alloc/global.rs":"14836ad7d73a364474fc153b24a1f17ad0e60a69b90a8721dc1059eada8bf869","src/stable/alloc/mod.rs":"866dafd3984dd246e381d8ad1c2b3e02a60c3421b598ca493aa83f9b6422608d","src/stable/alloc/system.rs":"db5d5bf088eecac3fc5ff1281e1bf26ca36dd38f13cd52c49d95ff1bab064254","src/stable/boxed.rs":"8b9b7f4cebbc1629c478dce0dd8227db16508e1383f24490d32eab7aeb3a0cea","src/stable/macros.rs":"74490796a766338d0163f40a37612cd9ea2de58ae3d8e9abf6c7bcf81d9be4a6","src/stable/mod.rs":"a6a724e10e4db4e3b7960c65bac803152a1115af46b898ff8a61e486365c16c7","src/stable/raw_vec.rs":"8cc0e3e4d5fd21e0e83776ff21c576cbb87b69647903ee9b8f5372f8781a7328","src/stable/slice.rs":"089263b058e6c185467bad7ad14908479e5675408fc70a8291e5dddaef36035a","src/stable/vec/drain.rs":"740cd2e0f31eeb0146bbd0f645a14fe12bacd3912f003db433ddc6b3a178461f","src/stable/vec/into_iter.rs":"88c22b09682cd90c7362d702d0501566173b2d836cf82a2b92ae11fdef5b9435","src/stable/vec/mod.rs":"1561b75d0bbcdf64f47bd7f1661088b68796f0e7e02a4e9391d8a50010b86f6b","src/stable/vec/partial_eq.rs":"9f1b18605164a62b58d9e17914d573698735de31c51ceb8bd3666e83d32df370","src/stable/vec/set_len_on_drop.rs":"561342e22a194e515cc25c9a1bcd827ca24c4db033e9e2c4266fbdd2fb16e5bc","src/stable/vec/splice.rs":"95a460b3a7b4af60fdc9ba04d3a719b61a0c11786cd2d8823d022e22c397f9c9"},"package":"5c6cb57a04249c6480766f7f7cef5467412af1490f8d1e243141daddada3264f"}
|
||||||
7
third_party/rust/allocator-api2/CHANGELOG.md
vendored
Normal file
7
third_party/rust/allocator-api2/CHANGELOG.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
# Changelog
|
||||||
|
All notable changes to this project will be documented in this file.
|
||||||
|
|
||||||
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||||
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [Unreleased]
|
||||||
38
third_party/rust/allocator-api2/Cargo.toml
vendored
Normal file
38
third_party/rust/allocator-api2/Cargo.toml
vendored
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
|
||||||
|
#
|
||||||
|
# When uploading crates to the registry Cargo will automatically
|
||||||
|
# "normalize" Cargo.toml files for maximal compatibility
|
||||||
|
# with all versions of Cargo and also rewrite `path` dependencies
|
||||||
|
# to registry (e.g., crates.io) dependencies.
|
||||||
|
#
|
||||||
|
# If you are reading this file be aware that the original Cargo.toml
|
||||||
|
# will likely look very different (and much more reasonable).
|
||||||
|
# See Cargo.toml.orig for the original contents.
|
||||||
|
|
||||||
|
# This is a fork of allocator-api2 0.2.18 with Box removed.
|
||||||
|
# See https://github.com/zakarumych/allocator-api2/issues/10
|
||||||
|
|
||||||
|
[package]
|
||||||
|
edition = "2018"
|
||||||
|
name = "allocator-api2"
|
||||||
|
version = "0.2.999"
|
||||||
|
authors = ["Zakarum <zaq.dev@icloud.com>"]
|
||||||
|
description = "Mirror of Rust's allocator API"
|
||||||
|
homepage = "https://github.com/zakarumych/allocator-api2"
|
||||||
|
documentation = "https://docs.rs/allocator-api2"
|
||||||
|
readme = "README.md"
|
||||||
|
license = "MIT OR Apache-2.0"
|
||||||
|
repository = "https://github.com/zakarumych/allocator-api2"
|
||||||
|
|
||||||
|
[dependencies.serde]
|
||||||
|
version = "1.0"
|
||||||
|
optional = true
|
||||||
|
|
||||||
|
[features]
|
||||||
|
alloc = []
|
||||||
|
default = ["std"]
|
||||||
|
nightly = []
|
||||||
|
std = ["alloc"]
|
||||||
|
|
||||||
|
[lints.rust]
|
||||||
|
unexpected_cfgs = { level = "warn", check-cfg = ['cfg(no_global_oom_handling)'] }
|
||||||
176
third_party/rust/allocator-api2/LICENSE-APACHE
vendored
Normal file
176
third_party/rust/allocator-api2/LICENSE-APACHE
vendored
Normal file
@@ -0,0 +1,176 @@
|
|||||||
|
Apache License
|
||||||
|
Version 2.0, January 2004
|
||||||
|
http://www.apache.org/licenses/
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||||
|
|
||||||
|
1. Definitions.
|
||||||
|
|
||||||
|
"License" shall mean the terms and conditions for use, reproduction,
|
||||||
|
and distribution as defined by Sections 1 through 9 of this document.
|
||||||
|
|
||||||
|
"Licensor" shall mean the copyright owner or entity authorized by
|
||||||
|
the copyright owner that is granting the License.
|
||||||
|
|
||||||
|
"Legal Entity" shall mean the union of the acting entity and all
|
||||||
|
other entities that control, are controlled by, or are under common
|
||||||
|
control with that entity. For the purposes of this definition,
|
||||||
|
"control" means (i) the power, direct or indirect, to cause the
|
||||||
|
direction or management of such entity, whether by contract or
|
||||||
|
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||||
|
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||||
|
|
||||||
|
"You" (or "Your") shall mean an individual or Legal Entity
|
||||||
|
exercising permissions granted by this License.
|
||||||
|
|
||||||
|
"Source" form shall mean the preferred form for making modifications,
|
||||||
|
including but not limited to software source code, documentation
|
||||||
|
source, and configuration files.
|
||||||
|
|
||||||
|
"Object" form shall mean any form resulting from mechanical
|
||||||
|
transformation or translation of a Source form, including but
|
||||||
|
not limited to compiled object code, generated documentation,
|
||||||
|
and conversions to other media types.
|
||||||
|
|
||||||
|
"Work" shall mean the work of authorship, whether in Source or
|
||||||
|
Object form, made available under the License, as indicated by a
|
||||||
|
copyright notice that is included in or attached to the work
|
||||||
|
(an example is provided in the Appendix below).
|
||||||
|
|
||||||
|
"Derivative Works" shall mean any work, whether in Source or Object
|
||||||
|
form, that is based on (or derived from) the Work and for which the
|
||||||
|
editorial revisions, annotations, elaborations, or other modifications
|
||||||
|
represent, as a whole, an original work of authorship. For the purposes
|
||||||
|
of this License, Derivative Works shall not include works that remain
|
||||||
|
separable from, or merely link (or bind by name) to the interfaces of,
|
||||||
|
the Work and Derivative Works thereof.
|
||||||
|
|
||||||
|
"Contribution" shall mean any work of authorship, including
|
||||||
|
the original version of the Work and any modifications or additions
|
||||||
|
to that Work or Derivative Works thereof, that is intentionally
|
||||||
|
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||||
|
or by an individual or Legal Entity authorized to submit on behalf of
|
||||||
|
the copyright owner. For the purposes of this definition, "submitted"
|
||||||
|
means any form of electronic, verbal, or written communication sent
|
||||||
|
to the Licensor or its representatives, including but not limited to
|
||||||
|
communication on electronic mailing lists, source code control systems,
|
||||||
|
and issue tracking systems that are managed by, or on behalf of, the
|
||||||
|
Licensor for the purpose of discussing and improving the Work, but
|
||||||
|
excluding communication that is conspicuously marked or otherwise
|
||||||
|
designated in writing by the copyright owner as "Not a Contribution."
|
||||||
|
|
||||||
|
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||||
|
on behalf of whom a Contribution has been received by Licensor and
|
||||||
|
subsequently incorporated within the Work.
|
||||||
|
|
||||||
|
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
copyright license to reproduce, prepare Derivative Works of,
|
||||||
|
publicly display, publicly perform, sublicense, and distribute the
|
||||||
|
Work and such Derivative Works in Source or Object form.
|
||||||
|
|
||||||
|
3. Grant of Patent License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
(except as stated in this section) patent license to make, have made,
|
||||||
|
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||||
|
where such license applies only to those patent claims licensable
|
||||||
|
by such Contributor that are necessarily infringed by their
|
||||||
|
Contribution(s) alone or by combination of their Contribution(s)
|
||||||
|
with the Work to which such Contribution(s) was submitted. If You
|
||||||
|
institute patent litigation against any entity (including a
|
||||||
|
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||||
|
or a Contribution incorporated within the Work constitutes direct
|
||||||
|
or contributory patent infringement, then any patent licenses
|
||||||
|
granted to You under this License for that Work shall terminate
|
||||||
|
as of the date such litigation is filed.
|
||||||
|
|
||||||
|
4. Redistribution. You may reproduce and distribute copies of the
|
||||||
|
Work or Derivative Works thereof in any medium, with or without
|
||||||
|
modifications, and in Source or Object form, provided that You
|
||||||
|
meet the following conditions:
|
||||||
|
|
||||||
|
(a) You must give any other recipients of the Work or
|
||||||
|
Derivative Works a copy of this License; and
|
||||||
|
|
||||||
|
(b) You must cause any modified files to carry prominent notices
|
||||||
|
stating that You changed the files; and
|
||||||
|
|
||||||
|
(c) You must retain, in the Source form of any Derivative Works
|
||||||
|
that You distribute, all copyright, patent, trademark, and
|
||||||
|
attribution notices from the Source form of the Work,
|
||||||
|
excluding those notices that do not pertain to any part of
|
||||||
|
the Derivative Works; and
|
||||||
|
|
||||||
|
(d) If the Work includes a "NOTICE" text file as part of its
|
||||||
|
distribution, then any Derivative Works that You distribute must
|
||||||
|
include a readable copy of the attribution notices contained
|
||||||
|
within such NOTICE file, excluding those notices that do not
|
||||||
|
pertain to any part of the Derivative Works, in at least one
|
||||||
|
of the following places: within a NOTICE text file distributed
|
||||||
|
as part of the Derivative Works; within the Source form or
|
||||||
|
documentation, if provided along with the Derivative Works; or,
|
||||||
|
within a display generated by the Derivative Works, if and
|
||||||
|
wherever such third-party notices normally appear. The contents
|
||||||
|
of the NOTICE file are for informational purposes only and
|
||||||
|
do not modify the License. You may add Your own attribution
|
||||||
|
notices within Derivative Works that You distribute, alongside
|
||||||
|
or as an addendum to the NOTICE text from the Work, provided
|
||||||
|
that such additional attribution notices cannot be construed
|
||||||
|
as modifying the License.
|
||||||
|
|
||||||
|
You may add Your own copyright statement to Your modifications and
|
||||||
|
may provide additional or different license terms and conditions
|
||||||
|
for use, reproduction, or distribution of Your modifications, or
|
||||||
|
for any such Derivative Works as a whole, provided Your use,
|
||||||
|
reproduction, and distribution of the Work otherwise complies with
|
||||||
|
the conditions stated in this License.
|
||||||
|
|
||||||
|
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||||
|
any Contribution intentionally submitted for inclusion in the Work
|
||||||
|
by You to the Licensor shall be under the terms and conditions of
|
||||||
|
this License, without any additional terms or conditions.
|
||||||
|
Notwithstanding the above, nothing herein shall supersede or modify
|
||||||
|
the terms of any separate license agreement you may have executed
|
||||||
|
with Licensor regarding such Contributions.
|
||||||
|
|
||||||
|
6. Trademarks. This License does not grant permission to use the trade
|
||||||
|
names, trademarks, service marks, or product names of the Licensor,
|
||||||
|
except as required for reasonable and customary use in describing the
|
||||||
|
origin of the Work and reproducing the content of the NOTICE file.
|
||||||
|
|
||||||
|
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||||
|
agreed to in writing, Licensor provides the Work (and each
|
||||||
|
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||||
|
implied, including, without limitation, any warranties or conditions
|
||||||
|
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||||
|
appropriateness of using or redistributing the Work and assume any
|
||||||
|
risks associated with Your exercise of permissions under this License.
|
||||||
|
|
||||||
|
8. Limitation of Liability. In no event and under no legal theory,
|
||||||
|
whether in tort (including negligence), contract, or otherwise,
|
||||||
|
unless required by applicable law (such as deliberate and grossly
|
||||||
|
negligent acts) or agreed to in writing, shall any Contributor be
|
||||||
|
liable to You for damages, including any direct, indirect, special,
|
||||||
|
incidental, or consequential damages of any character arising as a
|
||||||
|
result of this License or out of the use or inability to use the
|
||||||
|
Work (including but not limited to damages for loss of goodwill,
|
||||||
|
work stoppage, computer failure or malfunction, or any and all
|
||||||
|
other commercial damages or losses), even if such Contributor
|
||||||
|
has been advised of the possibility of such damages.
|
||||||
|
|
||||||
|
9. Accepting Warranty or Additional Liability. While redistributing
|
||||||
|
the Work or Derivative Works thereof, You may choose to offer,
|
||||||
|
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||||
|
or other liability obligations and/or rights consistent with this
|
||||||
|
License. However, in accepting such obligations, You may act only
|
||||||
|
on Your own behalf and on Your sole responsibility, not on behalf
|
||||||
|
of any other Contributor, and only if You agree to indemnify,
|
||||||
|
defend, and hold each Contributor harmless for any liability
|
||||||
|
incurred by, or claims asserted against, such Contributor by reason
|
||||||
|
of your accepting any such warranty or additional liability.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
23
third_party/rust/allocator-api2/LICENSE-MIT
vendored
Normal file
23
third_party/rust/allocator-api2/LICENSE-MIT
vendored
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
Permission is hereby granted, free of charge, to any
|
||||||
|
person obtaining a copy of this software and associated
|
||||||
|
documentation files (the "Software"), to deal in the
|
||||||
|
Software without restriction, including without
|
||||||
|
limitation the rights to use, copy, modify, merge,
|
||||||
|
publish, distribute, sublicense, and/or sell copies of
|
||||||
|
the Software, and to permit persons to whom the Software
|
||||||
|
is furnished to do so, subject to the following
|
||||||
|
conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice
|
||||||
|
shall be included in all copies or substantial portions
|
||||||
|
of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||||
|
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||||
|
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||||
|
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||||
|
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||||
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||||
|
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
DEALINGS IN THE SOFTWARE.
|
||||||
53
third_party/rust/allocator-api2/README.md
vendored
Normal file
53
third_party/rust/allocator-api2/README.md
vendored
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
# allocator-api2
|
||||||
|
|
||||||
|
[](https://crates.io/crates/allocator-api2)
|
||||||
|
[](https://docs.rs/allocator-api2)
|
||||||
|
[](https://github.com/zakarumych/allocator-api2/actions/workflows/badge.yml)
|
||||||
|
[](COPYING)
|
||||||
|

|
||||||
|
|
||||||
|
This crate mirrors types and traits from Rust's unstable [`allocator_api`]
|
||||||
|
The intention of this crate is to serve as substitution for actual thing
|
||||||
|
for libs when build on stable and beta channels.
|
||||||
|
The target users are library authors who implement allocators or collection types
|
||||||
|
that use allocators, or anyone else who wants using [`allocator_api`]
|
||||||
|
|
||||||
|
The crate should be frequently updated with minor version bump.
|
||||||
|
When [`allocator_api`] is stable this crate will get version `1.0` and simply
|
||||||
|
re-export from `core`, `alloc` and `std`.
|
||||||
|
|
||||||
|
The code is mostly verbatim copy from rust repository.
|
||||||
|
Mostly attributes are removed.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
This paragraph describes how to use this crate correctly to ensure
|
||||||
|
compatibility and interoperability on both stable and nightly channels.
|
||||||
|
|
||||||
|
If you are writing a library that interacts with allocators API, you can
|
||||||
|
add this crate as a dependency and use the types and traits from this
|
||||||
|
crate instead of the ones in `core` or `alloc`.
|
||||||
|
This will allow your library to compile on stable and beta channels.
|
||||||
|
|
||||||
|
Your library *MAY* provide a feature that will enable "allocator-api2/nightly".
|
||||||
|
When this feature is enabled, your library *MUST* enable
|
||||||
|
unstable `#![feature(allocator_api)]` or it may not compile.
|
||||||
|
If feature is not provided, your library may not be compatible with the
|
||||||
|
rest of the users and cause compilation errors on nightly channel
|
||||||
|
when some other crate enables "allocator-api2/nightly" feature.
|
||||||
|
|
||||||
|
## License
|
||||||
|
|
||||||
|
Licensed under either of
|
||||||
|
|
||||||
|
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||||
|
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||||
|
|
||||||
|
at your option.
|
||||||
|
|
||||||
|
## Contributions
|
||||||
|
|
||||||
|
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
|
||||||
|
|
||||||
|
|
||||||
|
[`allocator_api`]: https://doc.rust-lang.org/unstable-book/library-features/allocator-api.html
|
||||||
20
third_party/rust/allocator-api2/src/lib.rs
vendored
Normal file
20
third_party/rust/allocator-api2/src/lib.rs
vendored
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
//!
|
||||||
|
//! allocator-api2 crate.
|
||||||
|
//!
|
||||||
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||||||
|
#![allow(unused)]
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
extern crate alloc as alloc_crate;
|
||||||
|
|
||||||
|
#[cfg(not(feature = "nightly"))]
|
||||||
|
mod stable;
|
||||||
|
|
||||||
|
#[cfg(feature = "nightly")]
|
||||||
|
mod nightly;
|
||||||
|
|
||||||
|
#[cfg(not(feature = "nightly"))]
|
||||||
|
pub use self::stable::*;
|
||||||
|
|
||||||
|
#[cfg(feature = "nightly")]
|
||||||
|
pub use self::nightly::*;
|
||||||
5
third_party/rust/allocator-api2/src/nightly.rs
vendored
Normal file
5
third_party/rust/allocator-api2/src/nightly.rs
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
#[cfg(not(feature = "alloc"))]
|
||||||
|
pub use core::alloc;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub use alloc_crate::{alloc, vec};
|
||||||
187
third_party/rust/allocator-api2/src/stable/alloc/global.rs
vendored
Normal file
187
third_party/rust/allocator-api2/src/stable/alloc/global.rs
vendored
Normal file
@@ -0,0 +1,187 @@
|
|||||||
|
use core::ptr::NonNull;
|
||||||
|
|
||||||
|
use alloc_crate::alloc::{alloc, alloc_zeroed, dealloc, realloc};
|
||||||
|
|
||||||
|
use crate::stable::{assume, invalid_mut};
|
||||||
|
|
||||||
|
use super::{AllocError, Allocator, Layout};
|
||||||
|
|
||||||
|
/// The global memory allocator.
|
||||||
|
///
|
||||||
|
/// This type implements the [`Allocator`] trait by forwarding calls
|
||||||
|
/// to the allocator registered with the `#[global_allocator]` attribute
|
||||||
|
/// if there is one, or the `std` crate’s default.
|
||||||
|
///
|
||||||
|
/// Note: while this type is unstable, the functionality it provides can be
|
||||||
|
/// accessed through the [free functions in `alloc`](crate#functions).
|
||||||
|
#[derive(Copy, Clone, Default, Debug)]
|
||||||
|
pub struct Global;
|
||||||
|
|
||||||
|
impl Global {
|
||||||
|
#[inline(always)]
|
||||||
|
fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
match layout.size() {
|
||||||
|
0 => Ok(unsafe {
|
||||||
|
NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
invalid_mut(layout.align()),
|
||||||
|
0,
|
||||||
|
))
|
||||||
|
}),
|
||||||
|
// SAFETY: `layout` is non-zero in size,
|
||||||
|
size => unsafe {
|
||||||
|
let raw_ptr = if zeroed {
|
||||||
|
alloc_zeroed(layout)
|
||||||
|
} else {
|
||||||
|
alloc(layout)
|
||||||
|
};
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// SAFETY: Same as `Allocator::grow`
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_impl(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
zeroed: bool,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() >= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
match old_layout.size() {
|
||||||
|
0 => self.alloc_impl(new_layout, zeroed),
|
||||||
|
|
||||||
|
// SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size`
|
||||||
|
// as required by safety conditions. Other conditions must be upheld by the caller
|
||||||
|
old_size if old_layout.align() == new_layout.align() => unsafe {
|
||||||
|
let new_size = new_layout.size();
|
||||||
|
|
||||||
|
// `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
|
||||||
|
assume(new_size >= old_layout.size());
|
||||||
|
|
||||||
|
let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
if zeroed {
|
||||||
|
raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
|
||||||
|
}
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
new_size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
|
||||||
|
// both the old and new memory allocation are valid for reads and writes for `old_size`
|
||||||
|
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||||||
|
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||||||
|
// for `dealloc` must be upheld by the caller.
|
||||||
|
old_size => unsafe {
|
||||||
|
let new_ptr = self.alloc_impl(new_layout, zeroed)?;
|
||||||
|
core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_size);
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
Ok(new_ptr)
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe impl Allocator for Global {
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
self.alloc_impl(layout, false)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
self.alloc_impl(layout, true)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
|
||||||
|
if layout.size() != 0 {
|
||||||
|
// SAFETY: `layout` is non-zero in size,
|
||||||
|
// other conditions must be upheld by the caller
|
||||||
|
unsafe { dealloc(ptr.as_ptr(), layout) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: all conditions must be upheld by the caller
|
||||||
|
unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_zeroed(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: all conditions must be upheld by the caller
|
||||||
|
unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn shrink(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() <= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
match new_layout.size() {
|
||||||
|
// SAFETY: conditions must be upheld by the caller
|
||||||
|
0 => unsafe {
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
invalid_mut(new_layout.align()),
|
||||||
|
0,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
|
||||||
|
new_size if old_layout.align() == new_layout.align() => unsafe {
|
||||||
|
// `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
|
||||||
|
assume(new_size <= old_layout.size());
|
||||||
|
|
||||||
|
let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
new_size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
|
||||||
|
// both the old and new memory allocation are valid for reads and writes for `new_size`
|
||||||
|
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||||||
|
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||||||
|
// for `dealloc` must be upheld by the caller.
|
||||||
|
new_size => unsafe {
|
||||||
|
let new_ptr = self.allocate(new_layout)?;
|
||||||
|
core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_size);
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
Ok(new_ptr)
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
416
third_party/rust/allocator-api2/src/stable/alloc/mod.rs
vendored
Normal file
416
third_party/rust/allocator-api2/src/stable/alloc/mod.rs
vendored
Normal file
@@ -0,0 +1,416 @@
|
|||||||
|
//! Memory allocation APIs
|
||||||
|
|
||||||
|
use core::{
|
||||||
|
fmt,
|
||||||
|
ptr::{self, NonNull},
|
||||||
|
};
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
mod global;
|
||||||
|
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
mod system;
|
||||||
|
|
||||||
|
pub use core::alloc::{GlobalAlloc, Layout, LayoutError};
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub use self::global::Global;
|
||||||
|
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
pub use self::system::System;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub use alloc_crate::alloc::{alloc, alloc_zeroed, dealloc, realloc};
|
||||||
|
|
||||||
|
#[cfg(all(feature = "alloc", not(no_global_oom_handling)))]
|
||||||
|
pub use alloc_crate::alloc::handle_alloc_error;
|
||||||
|
|
||||||
|
/// The `AllocError` error indicates an allocation failure
|
||||||
|
/// that may be due to resource exhaustion or to
|
||||||
|
/// something wrong when combining the given input arguments with this
|
||||||
|
/// allocator.
|
||||||
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||||
|
pub struct AllocError;
|
||||||
|
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
impl std::error::Error for AllocError {}
|
||||||
|
|
||||||
|
// (we need this for downstream impl of trait Error)
|
||||||
|
impl fmt::Display for AllocError {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
f.write_str("memory allocation failed")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An implementation of `Allocator` can allocate, grow, shrink, and deallocate arbitrary blocks of
|
||||||
|
/// data described via [`Layout`][].
|
||||||
|
///
|
||||||
|
/// `Allocator` is designed to be implemented on ZSTs, references, or smart pointers because having
|
||||||
|
/// an allocator like `MyAlloc([u8; N])` cannot be moved, without updating the pointers to the
|
||||||
|
/// allocated memory.
|
||||||
|
///
|
||||||
|
/// Unlike [`GlobalAlloc`][], zero-sized allocations are allowed in `Allocator`. If an underlying
|
||||||
|
/// allocator does not support this (like jemalloc) or return a null pointer (such as
|
||||||
|
/// `libc::malloc`), this must be caught by the implementation.
|
||||||
|
///
|
||||||
|
/// ### Currently allocated memory
|
||||||
|
///
|
||||||
|
/// Some of the methods require that a memory block be *currently allocated* via an allocator. This
|
||||||
|
/// means that:
|
||||||
|
///
|
||||||
|
/// * the starting address for that memory block was previously returned by [`allocate`], [`grow`], or
|
||||||
|
/// [`shrink`], and
|
||||||
|
///
|
||||||
|
/// * the memory block has not been subsequently deallocated, where blocks are either deallocated
|
||||||
|
/// directly by being passed to [`deallocate`] or were changed by being passed to [`grow`] or
|
||||||
|
/// [`shrink`] that returns `Ok`. If `grow` or `shrink` have returned `Err`, the passed pointer
|
||||||
|
/// remains valid.
|
||||||
|
///
|
||||||
|
/// [`allocate`]: Allocator::allocate
|
||||||
|
/// [`grow`]: Allocator::grow
|
||||||
|
/// [`shrink`]: Allocator::shrink
|
||||||
|
/// [`deallocate`]: Allocator::deallocate
|
||||||
|
///
|
||||||
|
/// ### Memory fitting
|
||||||
|
///
|
||||||
|
/// Some of the methods require that a layout *fit* a memory block. What it means for a layout to
|
||||||
|
/// "fit" a memory block means (or equivalently, for a memory block to "fit" a layout) is that the
|
||||||
|
/// following conditions must hold:
|
||||||
|
///
|
||||||
|
/// * The block must be allocated with the same alignment as [`layout.align()`], and
|
||||||
|
///
|
||||||
|
/// * The provided [`layout.size()`] must fall in the range `min ..= max`, where:
|
||||||
|
/// - `min` is the size of the layout most recently used to allocate the block, and
|
||||||
|
/// - `max` is the latest actual size returned from [`allocate`], [`grow`], or [`shrink`].
|
||||||
|
///
|
||||||
|
/// [`layout.align()`]: Layout::align
|
||||||
|
/// [`layout.size()`]: Layout::size
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * Memory blocks returned from an allocator must point to valid memory and retain their validity
|
||||||
|
/// until the instance and all of its clones are dropped,
|
||||||
|
///
|
||||||
|
/// * cloning or moving the allocator must not invalidate memory blocks returned from this
|
||||||
|
/// allocator. A cloned allocator must behave like the same allocator, and
|
||||||
|
///
|
||||||
|
/// * any pointer to a memory block which is [*currently allocated*] may be passed to any other
|
||||||
|
/// method of the allocator.
|
||||||
|
///
|
||||||
|
/// [*currently allocated*]: #currently-allocated-memory
|
||||||
|
pub unsafe trait Allocator {
|
||||||
|
/// Attempts to allocate a block of memory.
|
||||||
|
///
|
||||||
|
/// On success, returns a [`NonNull<[u8]>`][NonNull] meeting the size and alignment guarantees of `layout`.
|
||||||
|
///
|
||||||
|
/// The returned block may have a larger size than specified by `layout.size()`, and may or may
|
||||||
|
/// not have its contents initialized.
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returning `Err` indicates that either memory is exhausted or `layout` does not meet
|
||||||
|
/// allocator's size or alignment constraints.
|
||||||
|
///
|
||||||
|
/// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
|
||||||
|
/// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
|
||||||
|
/// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
|
||||||
|
///
|
||||||
|
/// Clients wishing to abort computation in response to an allocation error are encouraged to
|
||||||
|
/// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
|
||||||
|
///
|
||||||
|
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
|
||||||
|
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;
|
||||||
|
|
||||||
|
/// Behaves like `allocate`, but also ensures that the returned memory is zero-initialized.
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returning `Err` indicates that either memory is exhausted or `layout` does not meet
|
||||||
|
/// allocator's size or alignment constraints.
|
||||||
|
///
|
||||||
|
/// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
|
||||||
|
/// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
|
||||||
|
/// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
|
||||||
|
///
|
||||||
|
/// Clients wishing to abort computation in response to an allocation error are encouraged to
|
||||||
|
/// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
|
||||||
|
///
|
||||||
|
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
let ptr = self.allocate(layout)?;
|
||||||
|
// SAFETY: `alloc` returns a valid memory block
|
||||||
|
unsafe { ptr.cast::<u8>().as_ptr().write_bytes(0, ptr.len()) }
|
||||||
|
Ok(ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Deallocates the memory referenced by `ptr`.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * `ptr` must denote a block of memory [*currently allocated*] via this allocator, and
|
||||||
|
/// * `layout` must [*fit*] that block of memory.
|
||||||
|
///
|
||||||
|
/// [*currently allocated*]: #currently-allocated-memory
|
||||||
|
/// [*fit*]: #memory-fitting
|
||||||
|
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);
|
||||||
|
|
||||||
|
/// Attempts to extend the memory block.
|
||||||
|
///
|
||||||
|
/// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated
|
||||||
|
/// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish
|
||||||
|
/// this, the allocator may extend the allocation referenced by `ptr` to fit the new layout.
|
||||||
|
///
|
||||||
|
/// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been
|
||||||
|
/// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the
|
||||||
|
/// allocation was grown in-place. The newly returned pointer is the only valid pointer
|
||||||
|
/// for accessing this memory now.
|
||||||
|
///
|
||||||
|
/// If this method returns `Err`, then ownership of the memory block has not been transferred to
|
||||||
|
/// this allocator, and the contents of the memory block are unaltered.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
|
||||||
|
/// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
|
||||||
|
/// * `new_layout.size()` must be greater than or equal to `old_layout.size()`.
|
||||||
|
///
|
||||||
|
/// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
|
||||||
|
///
|
||||||
|
/// [*currently allocated*]: #currently-allocated-memory
|
||||||
|
/// [*fit*]: #memory-fitting
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returns `Err` if the new layout does not meet the allocator's size and alignment
|
||||||
|
/// constraints of the allocator, or if growing otherwise fails.
|
||||||
|
///
|
||||||
|
/// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
|
||||||
|
/// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
|
||||||
|
/// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
|
||||||
|
///
|
||||||
|
/// Clients wishing to abort computation in response to an allocation error are encouraged to
|
||||||
|
/// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
|
||||||
|
///
|
||||||
|
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() >= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
let new_ptr = self.allocate(new_layout)?;
|
||||||
|
|
||||||
|
// SAFETY: because `new_layout.size()` must be greater than or equal to
|
||||||
|
// `old_layout.size()`, both the old and new memory allocation are valid for reads and
|
||||||
|
// writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
|
||||||
|
// deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
|
||||||
|
// safe. The safety contract for `dealloc` must be upheld by the caller.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size());
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(new_ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Behaves like `grow`, but also ensures that the new contents are set to zero before being
|
||||||
|
/// returned.
|
||||||
|
///
|
||||||
|
/// The memory block will contain the following contents after a successful call to
|
||||||
|
/// `grow_zeroed`:
|
||||||
|
/// * Bytes `0..old_layout.size()` are preserved from the original allocation.
|
||||||
|
/// * Bytes `old_layout.size()..old_size` will either be preserved or zeroed, depending on
|
||||||
|
/// the allocator implementation. `old_size` refers to the size of the memory block prior
|
||||||
|
/// to the `grow_zeroed` call, which may be larger than the size that was originally
|
||||||
|
/// requested when it was allocated.
|
||||||
|
/// * Bytes `old_size..new_size` are zeroed. `new_size` refers to the size of the memory
|
||||||
|
/// block returned by the `grow_zeroed` call.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
|
||||||
|
/// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
|
||||||
|
/// * `new_layout.size()` must be greater than or equal to `old_layout.size()`.
|
||||||
|
///
|
||||||
|
/// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
|
||||||
|
///
|
||||||
|
/// [*currently allocated*]: #currently-allocated-memory
|
||||||
|
/// [*fit*]: #memory-fitting
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returns `Err` if the new layout does not meet the allocator's size and alignment
|
||||||
|
/// constraints of the allocator, or if growing otherwise fails.
|
||||||
|
///
|
||||||
|
/// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
|
||||||
|
/// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
|
||||||
|
/// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
|
||||||
|
///
|
||||||
|
/// Clients wishing to abort computation in response to an allocation error are encouraged to
|
||||||
|
/// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
|
||||||
|
///
|
||||||
|
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_zeroed(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() >= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
let new_ptr = self.allocate_zeroed(new_layout)?;
|
||||||
|
|
||||||
|
// SAFETY: because `new_layout.size()` must be greater than or equal to
|
||||||
|
// `old_layout.size()`, both the old and new memory allocation are valid for reads and
|
||||||
|
// writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
|
||||||
|
// deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
|
||||||
|
// safe. The safety contract for `dealloc` must be upheld by the caller.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size());
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(new_ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Attempts to shrink the memory block.
|
||||||
|
///
|
||||||
|
/// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated
|
||||||
|
/// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish
|
||||||
|
/// this, the allocator may shrink the allocation referenced by `ptr` to fit the new layout.
|
||||||
|
///
|
||||||
|
/// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been
|
||||||
|
/// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the
|
||||||
|
/// allocation was shrunk in-place. The newly returned pointer is the only valid pointer
|
||||||
|
/// for accessing this memory now.
|
||||||
|
///
|
||||||
|
/// If this method returns `Err`, then ownership of the memory block has not been transferred to
|
||||||
|
/// this allocator, and the contents of the memory block are unaltered.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
|
||||||
|
/// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
|
||||||
|
/// * `new_layout.size()` must be smaller than or equal to `old_layout.size()`.
|
||||||
|
///
|
||||||
|
/// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
|
||||||
|
///
|
||||||
|
/// [*currently allocated*]: #currently-allocated-memory
|
||||||
|
/// [*fit*]: #memory-fitting
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returns `Err` if the new layout does not meet the allocator's size and alignment
|
||||||
|
/// constraints of the allocator, or if shrinking otherwise fails.
|
||||||
|
///
|
||||||
|
/// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
|
||||||
|
/// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
|
||||||
|
/// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
|
||||||
|
///
|
||||||
|
/// Clients wishing to abort computation in response to an allocation error are encouraged to
|
||||||
|
/// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
|
||||||
|
///
|
||||||
|
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn shrink(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() <= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
let new_ptr = self.allocate(new_layout)?;
|
||||||
|
|
||||||
|
// SAFETY: because `new_layout.size()` must be lower than or equal to
|
||||||
|
// `old_layout.size()`, both the old and new memory allocation are valid for reads and
|
||||||
|
// writes for `new_layout.size()` bytes. Also, because the old allocation wasn't yet
|
||||||
|
// deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
|
||||||
|
// safe. The safety contract for `dealloc` must be upheld by the caller.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_layout.size());
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(new_ptr)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creates a "by reference" adapter for this instance of `Allocator`.
|
||||||
|
///
|
||||||
|
/// The returned adapter also implements `Allocator` and will simply borrow this.
|
||||||
|
#[inline(always)]
|
||||||
|
fn by_ref(&self) -> &Self
|
||||||
|
where
|
||||||
|
Self: Sized,
|
||||||
|
{
|
||||||
|
self
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe impl<A> Allocator for &A
|
||||||
|
where
|
||||||
|
A: Allocator + ?Sized,
|
||||||
|
{
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
(**self).allocate(layout)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
(**self).allocate_zeroed(layout)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
|
||||||
|
// SAFETY: the safety contract must be upheld by the caller
|
||||||
|
unsafe { (**self).deallocate(ptr, layout) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: the safety contract must be upheld by the caller
|
||||||
|
unsafe { (**self).grow(ptr, old_layout, new_layout) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_zeroed(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: the safety contract must be upheld by the caller
|
||||||
|
unsafe { (**self).grow_zeroed(ptr, old_layout, new_layout) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn shrink(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: the safety contract must be upheld by the caller
|
||||||
|
unsafe { (**self).shrink(ptr, old_layout, new_layout) }
|
||||||
|
}
|
||||||
|
}
|
||||||
172
third_party/rust/allocator-api2/src/stable/alloc/system.rs
vendored
Normal file
172
third_party/rust/allocator-api2/src/stable/alloc/system.rs
vendored
Normal file
@@ -0,0 +1,172 @@
|
|||||||
|
use core::ptr::NonNull;
|
||||||
|
pub use std::alloc::System;
|
||||||
|
|
||||||
|
use crate::stable::{assume, invalid_mut};
|
||||||
|
|
||||||
|
use super::{AllocError, Allocator, GlobalAlloc as _, Layout};
|
||||||
|
|
||||||
|
unsafe impl Allocator for System {
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
alloc_impl(layout, false)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
alloc_impl(layout, true)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
|
||||||
|
if layout.size() != 0 {
|
||||||
|
// SAFETY: `layout` is non-zero in size,
|
||||||
|
// other conditions must be upheld by the caller
|
||||||
|
unsafe { System.dealloc(ptr.as_ptr(), layout) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: all conditions must be upheld by the caller
|
||||||
|
unsafe { grow_impl(ptr, old_layout, new_layout, false) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_zeroed(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
// SAFETY: all conditions must be upheld by the caller
|
||||||
|
unsafe { grow_impl(ptr, old_layout, new_layout, true) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn shrink(
|
||||||
|
&self,
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() <= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
match new_layout.size() {
|
||||||
|
// SAFETY: conditions must be upheld by the caller
|
||||||
|
0 => unsafe {
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
invalid_mut(new_layout.align()),
|
||||||
|
0,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
|
||||||
|
new_size if old_layout.align() == new_layout.align() => unsafe {
|
||||||
|
// `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
|
||||||
|
assume(new_size <= old_layout.size());
|
||||||
|
|
||||||
|
let raw_ptr = System.realloc(ptr.as_ptr(), old_layout, new_size);
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
new_size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
|
||||||
|
// both the old and new memory allocation are valid for reads and writes for `new_size`
|
||||||
|
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||||||
|
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||||||
|
// for `dealloc` must be upheld by the caller.
|
||||||
|
new_size => unsafe {
|
||||||
|
let new_ptr = self.allocate(new_layout)?;
|
||||||
|
core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_size);
|
||||||
|
self.deallocate(ptr, old_layout);
|
||||||
|
Ok(new_ptr)
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn alloc_impl(layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
match layout.size() {
|
||||||
|
0 => Ok(unsafe {
|
||||||
|
NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
invalid_mut(layout.align()),
|
||||||
|
0,
|
||||||
|
))
|
||||||
|
}),
|
||||||
|
// SAFETY: `layout` is non-zero in size,
|
||||||
|
size => unsafe {
|
||||||
|
let raw_ptr = if zeroed {
|
||||||
|
System.alloc_zeroed(layout)
|
||||||
|
} else {
|
||||||
|
System.alloc(layout)
|
||||||
|
};
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// SAFETY: Same as `Allocator::grow`
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn grow_impl(
|
||||||
|
ptr: NonNull<u8>,
|
||||||
|
old_layout: Layout,
|
||||||
|
new_layout: Layout,
|
||||||
|
zeroed: bool,
|
||||||
|
) -> Result<NonNull<[u8]>, AllocError> {
|
||||||
|
debug_assert!(
|
||||||
|
new_layout.size() >= old_layout.size(),
|
||||||
|
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
match old_layout.size() {
|
||||||
|
0 => alloc_impl(new_layout, zeroed),
|
||||||
|
|
||||||
|
// SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size`
|
||||||
|
// as required by safety conditions. Other conditions must be upheld by the caller
|
||||||
|
old_size if old_layout.align() == new_layout.align() => unsafe {
|
||||||
|
let new_size = new_layout.size();
|
||||||
|
|
||||||
|
// `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
|
||||||
|
assume(new_size >= old_layout.size());
|
||||||
|
|
||||||
|
let raw_ptr = System.realloc(ptr.as_ptr(), old_layout, new_size);
|
||||||
|
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||||||
|
if zeroed {
|
||||||
|
raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
|
||||||
|
}
|
||||||
|
Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
|
||||||
|
ptr.as_ptr(),
|
||||||
|
new_size,
|
||||||
|
)))
|
||||||
|
},
|
||||||
|
|
||||||
|
// SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
|
||||||
|
// both the old and new memory allocation are valid for reads and writes for `old_size`
|
||||||
|
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||||||
|
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||||||
|
// for `dealloc` must be upheld by the caller.
|
||||||
|
old_size => unsafe {
|
||||||
|
let new_ptr = alloc_impl(new_layout, zeroed)?;
|
||||||
|
core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_size);
|
||||||
|
System.deallocate(ptr, old_layout);
|
||||||
|
Ok(new_ptr)
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
2155
third_party/rust/allocator-api2/src/stable/boxed.rs
vendored
Normal file
2155
third_party/rust/allocator-api2/src/stable/boxed.rs
vendored
Normal file
File diff suppressed because it is too large
Load Diff
87
third_party/rust/allocator-api2/src/stable/macros.rs
vendored
Normal file
87
third_party/rust/allocator-api2/src/stable/macros.rs
vendored
Normal file
@@ -0,0 +1,87 @@
|
|||||||
|
/// Creates a [`Vec`] containing the arguments.
|
||||||
|
///
|
||||||
|
/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions.
|
||||||
|
/// There are two forms of this macro:
|
||||||
|
///
|
||||||
|
/// - Create a [`Vec`] containing a given list of elements:
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use allocator_api2::vec;
|
||||||
|
/// let v = vec![1, 2, 3];
|
||||||
|
/// assert_eq!(v[0], 1);
|
||||||
|
/// assert_eq!(v[1], 2);
|
||||||
|
/// assert_eq!(v[2], 3);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use allocator_api2::{vec, alloc::Global};
|
||||||
|
/// let v = vec![in Global; 1, 2, 3];
|
||||||
|
/// assert_eq!(v[0], 1);
|
||||||
|
/// assert_eq!(v[1], 2);
|
||||||
|
/// assert_eq!(v[2], 3);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// - Create a [`Vec`] from a given element and size:
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use allocator_api2::vec;
|
||||||
|
/// let v = vec![1; 3];
|
||||||
|
/// assert_eq!(v, [1, 1, 1]);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use allocator_api2::{vec, alloc::Global};
|
||||||
|
/// let v = vec![in Global; 1; 3];
|
||||||
|
/// assert_eq!(v, [1, 1, 1]);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// Note that unlike array expressions this syntax supports all elements
|
||||||
|
/// which implement [`Clone`] and the number of elements doesn't have to be
|
||||||
|
/// a constant.
|
||||||
|
///
|
||||||
|
/// This will use `clone` to duplicate an expression, so one should be careful
|
||||||
|
/// using this with types having a nonstandard `Clone` implementation. For
|
||||||
|
/// example, `vec![Rc::new(1); 5]` will create a vector of five references
|
||||||
|
/// to the same boxed integer value, not five references pointing to independently
|
||||||
|
/// boxed integers.
|
||||||
|
///
|
||||||
|
/// Also, note that `vec![expr; 0]` is allowed, and produces an empty vector.
|
||||||
|
/// This will still evaluate `expr`, however, and immediately drop the resulting value, so
|
||||||
|
/// be mindful of side effects.
|
||||||
|
///
|
||||||
|
/// [`Vec`]: crate::vec::Vec
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[macro_export]
|
||||||
|
macro_rules! vec {
|
||||||
|
(in $alloc:expr $(;)?) => (
|
||||||
|
$crate::vec::Vec::new_in($alloc)
|
||||||
|
);
|
||||||
|
(in $alloc:expr; $elem:expr; $n:expr) => (
|
||||||
|
$crate::vec::from_elem_in($elem, $n, $alloc)
|
||||||
|
);
|
||||||
|
/*
|
||||||
|
(in $alloc:expr; $($x:expr),+ $(,)?) => (
|
||||||
|
$crate::boxed::Box::<[_]>::into_vec(
|
||||||
|
$crate::boxed::Box::slice(
|
||||||
|
$crate::boxed::Box::new_in([$($x),+], $alloc)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
*/
|
||||||
|
() => (
|
||||||
|
$crate::vec::Vec::new()
|
||||||
|
);
|
||||||
|
($elem:expr; $n:expr) => (
|
||||||
|
$crate::vec::from_elem($elem, $n)
|
||||||
|
);
|
||||||
|
/*
|
||||||
|
($($x:expr),+ $(,)?) => (
|
||||||
|
$crate::boxed::Box::<[_]>::into_vec(
|
||||||
|
$crate::boxed::Box::slice(
|
||||||
|
$crate::boxed::Box::new([$($x),+])
|
||||||
|
)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
*/
|
||||||
|
}
|
||||||
62
third_party/rust/allocator-api2/src/stable/mod.rs
vendored
Normal file
62
third_party/rust/allocator-api2/src/stable/mod.rs
vendored
Normal file
@@ -0,0 +1,62 @@
|
|||||||
|
#![deny(unsafe_op_in_unsafe_fn)]
|
||||||
|
#![allow(clippy::needless_doctest_main, clippy::partialeq_ne_impl)]
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub use self::slice::SliceExt;
|
||||||
|
|
||||||
|
pub mod alloc;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub(crate) mod boxed;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
mod raw_vec;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
pub mod vec;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
mod macros;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
mod slice;
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
#[track_caller]
|
||||||
|
#[inline(always)]
|
||||||
|
#[cfg(debug_assertions)]
|
||||||
|
unsafe fn assume(v: bool) {
|
||||||
|
if !v {
|
||||||
|
core::unreachable!()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
#[track_caller]
|
||||||
|
#[inline(always)]
|
||||||
|
#[cfg(not(debug_assertions))]
|
||||||
|
unsafe fn assume(v: bool) {
|
||||||
|
if !v {
|
||||||
|
unsafe {
|
||||||
|
core::hint::unreachable_unchecked();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
#[inline(always)]
|
||||||
|
fn addr<T>(x: *const T) -> usize {
|
||||||
|
#[allow(clippy::useless_transmute, clippy::transmutes_expressible_as_ptr_casts)]
|
||||||
|
unsafe {
|
||||||
|
core::mem::transmute(x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(feature = "alloc")]
|
||||||
|
#[inline(always)]
|
||||||
|
fn invalid_mut<T>(addr: usize) -> *mut T {
|
||||||
|
#[allow(clippy::useless_transmute, clippy::transmutes_expressible_as_ptr_casts)]
|
||||||
|
unsafe {
|
||||||
|
core::mem::transmute(addr)
|
||||||
|
}
|
||||||
|
}
|
||||||
642
third_party/rust/allocator-api2/src/stable/raw_vec.rs
vendored
Normal file
642
third_party/rust/allocator-api2/src/stable/raw_vec.rs
vendored
Normal file
@@ -0,0 +1,642 @@
|
|||||||
|
use core::alloc::LayoutError;
|
||||||
|
use core::mem::{self, ManuallyDrop, MaybeUninit};
|
||||||
|
use core::ops::Drop;
|
||||||
|
use core::ptr::{self, NonNull};
|
||||||
|
use core::slice;
|
||||||
|
use core::{cmp, fmt};
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
alloc::{Allocator, Global, Layout},
|
||||||
|
assume,
|
||||||
|
boxed::Box,
|
||||||
|
};
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
use super::alloc::handle_alloc_error;
|
||||||
|
|
||||||
|
/// The error type for `try_reserve` methods.
|
||||||
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||||
|
pub struct TryReserveError {
|
||||||
|
kind: TryReserveErrorKind,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl TryReserveError {
|
||||||
|
/// Details about the allocation that caused the error
|
||||||
|
pub fn kind(&self) -> TryReserveErrorKind {
|
||||||
|
self.kind.clone()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Details of the allocation that caused a `TryReserveError`
|
||||||
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||||
|
pub enum TryReserveErrorKind {
|
||||||
|
/// Error due to the computed capacity exceeding the collection's maximum
|
||||||
|
/// (usually `isize::MAX` bytes).
|
||||||
|
CapacityOverflow,
|
||||||
|
|
||||||
|
/// The memory allocator returned an error
|
||||||
|
AllocError {
|
||||||
|
/// The layout of allocation request that failed
|
||||||
|
layout: Layout,
|
||||||
|
|
||||||
|
#[doc(hidden)]
|
||||||
|
non_exhaustive: (),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
use TryReserveErrorKind::*;
|
||||||
|
|
||||||
|
impl From<TryReserveErrorKind> for TryReserveError {
|
||||||
|
#[inline(always)]
|
||||||
|
fn from(kind: TryReserveErrorKind) -> Self {
|
||||||
|
Self { kind }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<LayoutError> for TryReserveErrorKind {
|
||||||
|
/// Always evaluates to [`TryReserveErrorKind::CapacityOverflow`].
|
||||||
|
#[inline(always)]
|
||||||
|
fn from(_: LayoutError) -> Self {
|
||||||
|
TryReserveErrorKind::CapacityOverflow
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Display for TryReserveError {
|
||||||
|
fn fmt(
|
||||||
|
&self,
|
||||||
|
fmt: &mut core::fmt::Formatter<'_>,
|
||||||
|
) -> core::result::Result<(), core::fmt::Error> {
|
||||||
|
fmt.write_str("memory allocation failed")?;
|
||||||
|
let reason = match self.kind {
|
||||||
|
TryReserveErrorKind::CapacityOverflow => {
|
||||||
|
" because the computed capacity exceeded the collection's maximum"
|
||||||
|
}
|
||||||
|
TryReserveErrorKind::AllocError { .. } => {
|
||||||
|
" because the memory allocator returned an error"
|
||||||
|
}
|
||||||
|
};
|
||||||
|
fmt.write_str(reason)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
impl std::error::Error for TryReserveError {}
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
enum AllocInit {
|
||||||
|
/// The contents of the new memory are uninitialized.
|
||||||
|
Uninitialized,
|
||||||
|
/// The new memory is guaranteed to be zeroed.
|
||||||
|
Zeroed,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
|
||||||
|
/// a buffer of memory on the heap without having to worry about all the corner cases
|
||||||
|
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
|
||||||
|
/// In particular:
|
||||||
|
///
|
||||||
|
/// * Produces `NonNull::dangling()` on zero-sized types.
|
||||||
|
/// * Produces `NonNull::dangling()` on zero-length allocations.
|
||||||
|
/// * Avoids freeing `NonNull::dangling()`.
|
||||||
|
/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
|
||||||
|
/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
|
||||||
|
/// * Guards against overflowing your length.
|
||||||
|
/// * Calls `handle_alloc_error` for fallible allocations.
|
||||||
|
/// * Contains a `ptr::NonNull` and thus endows the user with all related benefits.
|
||||||
|
/// * Uses the excess returned from the allocator to use the largest available capacity.
|
||||||
|
///
|
||||||
|
/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
|
||||||
|
/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
|
||||||
|
/// to handle the actual things *stored* inside of a `RawVec`.
|
||||||
|
///
|
||||||
|
/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
|
||||||
|
/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
|
||||||
|
/// `Box<[T]>`, since `capacity()` won't yield the length.
|
||||||
|
#[allow(missing_debug_implementations)]
|
||||||
|
pub(crate) struct RawVec<T, A: Allocator = Global> {
|
||||||
|
ptr: NonNull<T>,
|
||||||
|
cap: usize,
|
||||||
|
alloc: A,
|
||||||
|
}
|
||||||
|
|
||||||
|
// Safety: RawVec owns both T and A, so sending is safe if
|
||||||
|
// sending is safe for T and A.
|
||||||
|
unsafe impl<T, A: Allocator> Send for RawVec<T, A>
|
||||||
|
where
|
||||||
|
T: Send,
|
||||||
|
A: Send,
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
// Safety: RawVec owns both T and A, so sharing is safe if
|
||||||
|
// sharing is safe for T and A.
|
||||||
|
unsafe impl<T, A: Allocator> Sync for RawVec<T, A>
|
||||||
|
where
|
||||||
|
T: Sync,
|
||||||
|
A: Sync,
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> RawVec<T, Global> {
|
||||||
|
/// Creates the biggest possible `RawVec` (on the system heap)
|
||||||
|
/// without allocating. If `T` has positive size, then this makes a
|
||||||
|
/// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
|
||||||
|
/// `RawVec` with capacity `usize::MAX`. Useful for implementing
|
||||||
|
/// delayed allocation.
|
||||||
|
#[must_use]
|
||||||
|
pub const fn new() -> Self {
|
||||||
|
Self::new_in(Global)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creates a `RawVec` (on the system heap) with exactly the
|
||||||
|
/// capacity and alignment requirements for a `[T; capacity]`. This is
|
||||||
|
/// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
|
||||||
|
/// zero-sized. Note that if `T` is zero-sized this means you will
|
||||||
|
/// *not* get a `RawVec` with the requested capacity.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics if the requested capacity exceeds `isize::MAX` bytes.
|
||||||
|
///
|
||||||
|
/// # Aborts
|
||||||
|
///
|
||||||
|
/// Aborts on OOM.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[must_use]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn with_capacity(capacity: usize) -> Self {
|
||||||
|
Self::with_capacity_in(capacity, Global)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `with_capacity`, but guarantees the buffer is zeroed.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[must_use]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn with_capacity_zeroed(capacity: usize) -> Self {
|
||||||
|
Self::with_capacity_zeroed_in(capacity, Global)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> RawVec<T, A> {
|
||||||
|
// Tiny Vecs are dumb. Skip to:
|
||||||
|
// - 8 if the element size is 1, because any heap allocators is likely
|
||||||
|
// to round up a request of less than 8 bytes to at least 8 bytes.
|
||||||
|
// - 4 if elements are moderate-sized (<= 1 KiB).
|
||||||
|
// - 1 otherwise, to avoid wasting too much space for very short Vecs.
|
||||||
|
pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
|
||||||
|
8
|
||||||
|
} else if mem::size_of::<T>() <= 1024 {
|
||||||
|
4
|
||||||
|
} else {
|
||||||
|
1
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Like `new`, but parameterized over the choice of allocator for
|
||||||
|
/// the returned `RawVec`.
|
||||||
|
#[inline(always)]
|
||||||
|
pub const fn new_in(alloc: A) -> Self {
|
||||||
|
// `cap: 0` means "unallocated". zero-sized types are ignored.
|
||||||
|
Self {
|
||||||
|
ptr: NonNull::dangling(),
|
||||||
|
cap: 0,
|
||||||
|
alloc,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `with_capacity`, but parameterized over the choice of
|
||||||
|
/// allocator for the returned `RawVec`.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
|
||||||
|
Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Like `with_capacity_zeroed`, but parameterized over the choice
|
||||||
|
/// of allocator for the returned `RawVec`.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
|
||||||
|
Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
|
||||||
|
///
|
||||||
|
/// Note that this will correctly reconstitute any `cap` changes
|
||||||
|
/// that may have been performed. (See description of type for details.)
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// * `len` must be greater than or equal to the most recently requested capacity, and
|
||||||
|
/// * `len` must be less than or equal to `self.capacity()`.
|
||||||
|
///
|
||||||
|
/// Note, that the requested capacity and `self.capacity()` could differ, as
|
||||||
|
/// an allocator could overallocate and return a greater memory block than requested.
|
||||||
|
#[inline(always)]
|
||||||
|
pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
|
||||||
|
// Sanity-check one half of the safety requirement (we cannot check the other half).
|
||||||
|
debug_assert!(
|
||||||
|
len <= self.capacity(),
|
||||||
|
"`len` must be smaller than or equal to `self.capacity()`"
|
||||||
|
);
|
||||||
|
|
||||||
|
let me = ManuallyDrop::new(self);
|
||||||
|
unsafe {
|
||||||
|
let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
|
||||||
|
Box::from_raw_in(slice, ptr::read(&me.alloc))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
|
||||||
|
// Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
|
||||||
|
if mem::size_of::<T>() == 0 || capacity == 0 {
|
||||||
|
Self::new_in(alloc)
|
||||||
|
} else {
|
||||||
|
// We avoid `unwrap_or_else` here because it bloats the amount of
|
||||||
|
// LLVM IR generated.
|
||||||
|
let layout = match Layout::array::<T>(capacity) {
|
||||||
|
Ok(layout) => layout,
|
||||||
|
Err(_) => capacity_overflow(),
|
||||||
|
};
|
||||||
|
match alloc_guard(layout.size()) {
|
||||||
|
Ok(_) => {}
|
||||||
|
Err(_) => capacity_overflow(),
|
||||||
|
}
|
||||||
|
let result = match init {
|
||||||
|
AllocInit::Uninitialized => alloc.allocate(layout),
|
||||||
|
AllocInit::Zeroed => alloc.allocate_zeroed(layout),
|
||||||
|
};
|
||||||
|
let ptr = match result {
|
||||||
|
Ok(ptr) => ptr,
|
||||||
|
Err(_) => handle_alloc_error(layout),
|
||||||
|
};
|
||||||
|
|
||||||
|
// Allocators currently return a `NonNull<[u8]>` whose length
|
||||||
|
// matches the size requested. If that ever changes, the capacity
|
||||||
|
// here should change to `ptr.len() / mem::size_of::<T>()`.
|
||||||
|
Self {
|
||||||
|
ptr: unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) },
|
||||||
|
cap: capacity,
|
||||||
|
alloc,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
|
||||||
|
/// `capacity`.
|
||||||
|
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
|
||||||
|
/// systems). ZST vectors may have a capacity up to `usize::MAX`.
|
||||||
|
/// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
|
||||||
|
/// guaranteed.
|
||||||
|
#[inline(always)]
|
||||||
|
pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
|
||||||
|
Self {
|
||||||
|
ptr: unsafe { NonNull::new_unchecked(ptr) },
|
||||||
|
cap: capacity,
|
||||||
|
alloc,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Gets a raw pointer to the start of the allocation. Note that this is
|
||||||
|
/// `NonNull::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
|
||||||
|
/// be careful.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn ptr(&self) -> *mut T {
|
||||||
|
self.ptr.as_ptr()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Gets the capacity of the allocation.
|
||||||
|
///
|
||||||
|
/// This will always be `usize::MAX` if `T` is zero-sized.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn capacity(&self) -> usize {
|
||||||
|
if mem::size_of::<T>() == 0 {
|
||||||
|
usize::MAX
|
||||||
|
} else {
|
||||||
|
self.cap
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a shared reference to the allocator backing this `RawVec`.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn allocator(&self) -> &A {
|
||||||
|
&self.alloc
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
|
||||||
|
if mem::size_of::<T>() == 0 || self.cap == 0 {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
// We have an allocated chunk of memory, so we can bypass runtime
|
||||||
|
// checks to get our current layout.
|
||||||
|
unsafe {
|
||||||
|
let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
|
||||||
|
Some((self.ptr.cast(), layout))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Ensures that the buffer contains at least enough space to hold `len +
|
||||||
|
/// additional` elements. If it doesn't already have enough capacity, will
|
||||||
|
/// reallocate enough space plus comfortable slack space to get amortized
|
||||||
|
/// *O*(1) behavior. Will limit this behavior if it would needlessly cause
|
||||||
|
/// itself to panic.
|
||||||
|
///
|
||||||
|
/// If `len` exceeds `self.capacity()`, this may fail to actually allocate
|
||||||
|
/// the requested space. This is not really unsafe, but the unsafe
|
||||||
|
/// code *you* write that relies on the behavior of this function may break.
|
||||||
|
///
|
||||||
|
/// This is ideal for implementing a bulk-push operation like `extend`.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics if the new capacity exceeds `isize::MAX` bytes.
|
||||||
|
///
|
||||||
|
/// # Aborts
|
||||||
|
///
|
||||||
|
/// Aborts on OOM.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn reserve(&mut self, len: usize, additional: usize) {
|
||||||
|
// Callers expect this function to be very cheap when there is already sufficient capacity.
|
||||||
|
// Therefore, we move all the resizing and error-handling logic from grow_amortized and
|
||||||
|
// handle_reserve behind a call, while making sure that this function is likely to be
|
||||||
|
// inlined as just a comparison and a call if the comparison fails.
|
||||||
|
#[cold]
|
||||||
|
#[inline(always)]
|
||||||
|
fn do_reserve_and_handle<T, A: Allocator>(
|
||||||
|
slf: &mut RawVec<T, A>,
|
||||||
|
len: usize,
|
||||||
|
additional: usize,
|
||||||
|
) {
|
||||||
|
handle_reserve(slf.grow_amortized(len, additional));
|
||||||
|
}
|
||||||
|
|
||||||
|
if self.needs_to_grow(len, additional) {
|
||||||
|
do_reserve_and_handle(self, len, additional);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A specialized version of `reserve()` used only by the hot and
|
||||||
|
/// oft-instantiated `Vec::push()`, which does its own capacity check.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn reserve_for_push(&mut self, len: usize) {
|
||||||
|
handle_reserve(self.grow_amortized(len, 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// The same as `reserve`, but returns on errors instead of panicking or aborting.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
||||||
|
if self.needs_to_grow(len, additional) {
|
||||||
|
self.grow_amortized(len, additional)
|
||||||
|
} else {
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Ensures that the buffer contains at least enough space to hold `len +
|
||||||
|
/// additional` elements. If it doesn't already, will reallocate the
|
||||||
|
/// minimum possible amount of memory necessary. Generally this will be
|
||||||
|
/// exactly the amount of memory necessary, but in principle the allocator
|
||||||
|
/// is free to give back more than we asked for.
|
||||||
|
///
|
||||||
|
/// If `len` exceeds `self.capacity()`, this may fail to actually allocate
|
||||||
|
/// the requested space. This is not really unsafe, but the unsafe code
|
||||||
|
/// *you* write that relies on the behavior of this function may break.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics if the new capacity exceeds `isize::MAX` bytes.
|
||||||
|
///
|
||||||
|
/// # Aborts
|
||||||
|
///
|
||||||
|
/// Aborts on OOM.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn reserve_exact(&mut self, len: usize, additional: usize) {
|
||||||
|
handle_reserve(self.try_reserve_exact(len, additional));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn try_reserve_exact(
|
||||||
|
&mut self,
|
||||||
|
len: usize,
|
||||||
|
additional: usize,
|
||||||
|
) -> Result<(), TryReserveError> {
|
||||||
|
if self.needs_to_grow(len, additional) {
|
||||||
|
self.grow_exact(len, additional)
|
||||||
|
} else {
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Shrinks the buffer down to the specified capacity. If the given amount
|
||||||
|
/// is 0, actually completely deallocates.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics if the given amount is *larger* than the current capacity.
|
||||||
|
///
|
||||||
|
/// # Aborts
|
||||||
|
///
|
||||||
|
/// Aborts on OOM.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn shrink_to_fit(&mut self, cap: usize) {
|
||||||
|
handle_reserve(self.shrink(cap));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> RawVec<T, A> {
|
||||||
|
/// Returns if the buffer needs to grow to fulfill the needed extra capacity.
|
||||||
|
/// Mainly used to make inlining reserve-calls possible without inlining `grow`.
|
||||||
|
#[inline(always)]
|
||||||
|
fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
|
||||||
|
additional > self.capacity().wrapping_sub(len)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
|
||||||
|
// Allocators currently return a `NonNull<[u8]>` whose length matches
|
||||||
|
// the size requested. If that ever changes, the capacity here should
|
||||||
|
// change to `ptr.len() / mem::size_of::<T>()`.
|
||||||
|
self.ptr = unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) };
|
||||||
|
self.cap = cap;
|
||||||
|
}
|
||||||
|
|
||||||
|
// This method is usually instantiated many times. So we want it to be as
|
||||||
|
// small as possible, to improve compile times. But we also want as much of
|
||||||
|
// its contents to be statically computable as possible, to make the
|
||||||
|
// generated code run faster. Therefore, this method is carefully written
|
||||||
|
// so that all of the code that depends on `T` is within it, while as much
|
||||||
|
// of the code that doesn't depend on `T` as possible is in functions that
|
||||||
|
// are non-generic over `T`.
|
||||||
|
#[inline(always)]
|
||||||
|
fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
||||||
|
// This is ensured by the calling contexts.
|
||||||
|
debug_assert!(additional > 0);
|
||||||
|
|
||||||
|
if mem::size_of::<T>() == 0 {
|
||||||
|
// Since we return a capacity of `usize::MAX` when `elem_size` is
|
||||||
|
// 0, getting to here necessarily means the `RawVec` is overfull.
|
||||||
|
return Err(CapacityOverflow.into());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Nothing we can really do about these checks, sadly.
|
||||||
|
let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
|
||||||
|
|
||||||
|
// This guarantees exponential growth. The doubling cannot overflow
|
||||||
|
// because `cap <= isize::MAX` and the type of `cap` is `usize`.
|
||||||
|
let cap = cmp::max(self.cap * 2, required_cap);
|
||||||
|
let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
|
||||||
|
|
||||||
|
let new_layout = Layout::array::<T>(cap);
|
||||||
|
|
||||||
|
// `finish_grow` is non-generic over `T`.
|
||||||
|
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
||||||
|
self.set_ptr_and_cap(ptr, cap);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
// The constraints on this method are much the same as those on
|
||||||
|
// `grow_amortized`, but this method is usually instantiated less often so
|
||||||
|
// it's less critical.
|
||||||
|
#[inline(always)]
|
||||||
|
fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
||||||
|
if mem::size_of::<T>() == 0 {
|
||||||
|
// Since we return a capacity of `usize::MAX` when the type size is
|
||||||
|
// 0, getting to here necessarily means the `RawVec` is overfull.
|
||||||
|
return Err(CapacityOverflow.into());
|
||||||
|
}
|
||||||
|
|
||||||
|
let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
|
||||||
|
let new_layout = Layout::array::<T>(cap);
|
||||||
|
|
||||||
|
// `finish_grow` is non-generic over `T`.
|
||||||
|
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
||||||
|
self.set_ptr_and_cap(ptr, cap);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
|
||||||
|
assert!(
|
||||||
|
cap <= self.capacity(),
|
||||||
|
"Tried to shrink to a larger capacity"
|
||||||
|
);
|
||||||
|
|
||||||
|
let (ptr, layout) = if let Some(mem) = self.current_memory() {
|
||||||
|
mem
|
||||||
|
} else {
|
||||||
|
return Ok(());
|
||||||
|
};
|
||||||
|
|
||||||
|
let ptr = unsafe {
|
||||||
|
// `Layout::array` cannot overflow here because it would have
|
||||||
|
// overflowed earlier when capacity was larger.
|
||||||
|
let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
|
||||||
|
self.alloc
|
||||||
|
.shrink(ptr, layout, new_layout)
|
||||||
|
.map_err(|_| AllocError {
|
||||||
|
layout: new_layout,
|
||||||
|
non_exhaustive: (),
|
||||||
|
})?
|
||||||
|
};
|
||||||
|
self.set_ptr_and_cap(ptr, cap);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// This function is outside `RawVec` to minimize compile times. See the comment
|
||||||
|
// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
|
||||||
|
// significant, because the number of different `A` types seen in practice is
|
||||||
|
// much smaller than the number of `T` types.)
|
||||||
|
#[inline(always)]
|
||||||
|
fn finish_grow<A>(
|
||||||
|
new_layout: Result<Layout, LayoutError>,
|
||||||
|
current_memory: Option<(NonNull<u8>, Layout)>,
|
||||||
|
alloc: &mut A,
|
||||||
|
) -> Result<NonNull<[u8]>, TryReserveError>
|
||||||
|
where
|
||||||
|
A: Allocator,
|
||||||
|
{
|
||||||
|
// Check for the error here to minimize the size of `RawVec::grow_*`.
|
||||||
|
let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
|
||||||
|
|
||||||
|
alloc_guard(new_layout.size())?;
|
||||||
|
|
||||||
|
let memory = if let Some((ptr, old_layout)) = current_memory {
|
||||||
|
debug_assert_eq!(old_layout.align(), new_layout.align());
|
||||||
|
unsafe {
|
||||||
|
// The allocator checks for alignment equality
|
||||||
|
assume(old_layout.align() == new_layout.align());
|
||||||
|
alloc.grow(ptr, old_layout, new_layout)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
alloc.allocate(new_layout)
|
||||||
|
};
|
||||||
|
|
||||||
|
memory.map_err(|_| {
|
||||||
|
AllocError {
|
||||||
|
layout: new_layout,
|
||||||
|
non_exhaustive: (),
|
||||||
|
}
|
||||||
|
.into()
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Drop for RawVec<T, A> {
|
||||||
|
/// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
|
||||||
|
#[inline(always)]
|
||||||
|
fn drop(&mut self) {
|
||||||
|
if let Some((ptr, layout)) = self.current_memory() {
|
||||||
|
unsafe { self.alloc.deallocate(ptr, layout) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Central function for reserve error handling.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
fn handle_reserve(result: Result<(), TryReserveError>) {
|
||||||
|
match result.map_err(|e| e.kind()) {
|
||||||
|
Err(CapacityOverflow) => capacity_overflow(),
|
||||||
|
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
|
||||||
|
Ok(()) => { /* yay */ }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// We need to guarantee the following:
|
||||||
|
// * We don't ever allocate `> isize::MAX` byte-size objects.
|
||||||
|
// * We don't overflow `usize::MAX` and actually allocate too little.
|
||||||
|
//
|
||||||
|
// On 64-bit we just need to check for overflow since trying to allocate
|
||||||
|
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
|
||||||
|
// an extra guard for this in case we're running on a platform which can use
|
||||||
|
// all 4GB in user-space, e.g., PAE or x32.
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
|
||||||
|
if usize::BITS < 64 && alloc_size > isize::MAX as usize {
|
||||||
|
Err(CapacityOverflow.into())
|
||||||
|
} else {
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// One central function responsible for reporting capacity overflows. This'll
|
||||||
|
// ensure that the code generation related to these panics is minimal as there's
|
||||||
|
// only one location which panics rather than a bunch throughout the module.
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
fn capacity_overflow() -> ! {
|
||||||
|
panic!("capacity overflow");
|
||||||
|
}
|
||||||
171
third_party/rust/allocator-api2/src/stable/slice.rs
vendored
Normal file
171
third_party/rust/allocator-api2/src/stable/slice.rs
vendored
Normal file
@@ -0,0 +1,171 @@
|
|||||||
|
use crate::{
|
||||||
|
alloc::{Allocator, Global},
|
||||||
|
vec::Vec,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Slice methods that use `Box` and `Vec` from this crate.
|
||||||
|
pub trait SliceExt<T> {
|
||||||
|
/// Copies `self` into a new `Vec`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let s = [10, 40, 30];
|
||||||
|
/// let x = s.to_vec();
|
||||||
|
/// // Here, `s` and `x` can be modified independently.
|
||||||
|
/// ```
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline(always)]
|
||||||
|
fn to_vec(&self) -> Vec<T, Global>
|
||||||
|
where
|
||||||
|
T: Clone,
|
||||||
|
{
|
||||||
|
self.to_vec_in(Global)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Copies `self` into a new `Vec` with an allocator.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// #![feature(allocator_api)]
|
||||||
|
///
|
||||||
|
/// use std::alloc::System;
|
||||||
|
///
|
||||||
|
/// let s = [10, 40, 30];
|
||||||
|
/// let x = s.to_vec_in(System);
|
||||||
|
/// // Here, `s` and `x` can be modified independently.
|
||||||
|
/// ```
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
|
||||||
|
where
|
||||||
|
T: Clone;
|
||||||
|
|
||||||
|
/// Creates a vector by copying a slice `n` times.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// This function will panic if the capacity would overflow.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// Basic usage:
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// A panic upon overflow:
|
||||||
|
///
|
||||||
|
/// ```should_panic
|
||||||
|
/// // this will panic at runtime
|
||||||
|
/// b"0123456789abcdef".repeat(usize::MAX);
|
||||||
|
/// ```
|
||||||
|
fn repeat(&self, n: usize) -> Vec<T, Global>
|
||||||
|
where
|
||||||
|
T: Copy;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> SliceExt<T> for [T] {
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline]
|
||||||
|
fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
|
||||||
|
where
|
||||||
|
T: Clone,
|
||||||
|
{
|
||||||
|
struct DropGuard<'a, T, A: Allocator> {
|
||||||
|
vec: &'a mut Vec<T, A>,
|
||||||
|
num_init: usize,
|
||||||
|
}
|
||||||
|
impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
|
||||||
|
#[inline]
|
||||||
|
fn drop(&mut self) {
|
||||||
|
// SAFETY:
|
||||||
|
// items were marked initialized in the loop below
|
||||||
|
unsafe {
|
||||||
|
self.vec.set_len(self.num_init);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut vec = Vec::with_capacity_in(self.len(), alloc);
|
||||||
|
let mut guard = DropGuard {
|
||||||
|
vec: &mut vec,
|
||||||
|
num_init: 0,
|
||||||
|
};
|
||||||
|
let slots = guard.vec.spare_capacity_mut();
|
||||||
|
// .take(slots.len()) is necessary for LLVM to remove bounds checks
|
||||||
|
// and has better codegen than zip.
|
||||||
|
for (i, b) in self.iter().enumerate().take(slots.len()) {
|
||||||
|
guard.num_init = i;
|
||||||
|
slots[i].write(b.clone());
|
||||||
|
}
|
||||||
|
core::mem::forget(guard);
|
||||||
|
// SAFETY:
|
||||||
|
// the vec was allocated and initialized above to at least this length.
|
||||||
|
unsafe {
|
||||||
|
vec.set_len(self.len());
|
||||||
|
}
|
||||||
|
vec
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
#[inline]
|
||||||
|
fn repeat(&self, n: usize) -> Vec<T, Global>
|
||||||
|
where
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
if n == 0 {
|
||||||
|
return Vec::new();
|
||||||
|
}
|
||||||
|
|
||||||
|
// If `n` is larger than zero, it can be split as
|
||||||
|
// `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
|
||||||
|
// `2^expn` is the number represented by the leftmost '1' bit of `n`,
|
||||||
|
// and `rem` is the remaining part of `n`.
|
||||||
|
|
||||||
|
// Using `Vec` to access `set_len()`.
|
||||||
|
let capacity = self.len().checked_mul(n).expect("capacity overflow");
|
||||||
|
let mut buf = Vec::with_capacity(capacity);
|
||||||
|
|
||||||
|
// `2^expn` repetition is done by doubling `buf` `expn`-times.
|
||||||
|
buf.extend(self);
|
||||||
|
{
|
||||||
|
let mut m = n >> 1;
|
||||||
|
// If `m > 0`, there are remaining bits up to the leftmost '1'.
|
||||||
|
while m > 0 {
|
||||||
|
// `buf.extend(buf)`:
|
||||||
|
unsafe {
|
||||||
|
core::ptr::copy_nonoverlapping(
|
||||||
|
buf.as_ptr(),
|
||||||
|
(buf.as_mut_ptr() as *mut T).add(buf.len()),
|
||||||
|
buf.len(),
|
||||||
|
);
|
||||||
|
// `buf` has capacity of `self.len() * n`.
|
||||||
|
let buf_len = buf.len();
|
||||||
|
buf.set_len(buf_len * 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
m >>= 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// `rem` (`= n - 2^expn`) repetition is done by copying
|
||||||
|
// first `rem` repetitions from `buf` itself.
|
||||||
|
let rem_len = capacity - buf.len(); // `self.len() * rem`
|
||||||
|
if rem_len > 0 {
|
||||||
|
// `buf.extend(buf[0 .. rem_len])`:
|
||||||
|
unsafe {
|
||||||
|
// This is non-overlapping since `2^expn > rem`.
|
||||||
|
core::ptr::copy_nonoverlapping(
|
||||||
|
buf.as_ptr(),
|
||||||
|
(buf.as_mut_ptr() as *mut T).add(buf.len()),
|
||||||
|
rem_len,
|
||||||
|
);
|
||||||
|
// `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
|
||||||
|
buf.set_len(capacity);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
buf
|
||||||
|
}
|
||||||
|
}
|
||||||
242
third_party/rust/allocator-api2/src/stable/vec/drain.rs
vendored
Normal file
242
third_party/rust/allocator-api2/src/stable/vec/drain.rs
vendored
Normal file
@@ -0,0 +1,242 @@
|
|||||||
|
use core::fmt;
|
||||||
|
use core::iter::FusedIterator;
|
||||||
|
use core::mem::{self, size_of, ManuallyDrop};
|
||||||
|
use core::ptr::{self, NonNull};
|
||||||
|
use core::slice::{self};
|
||||||
|
|
||||||
|
use crate::stable::alloc::{Allocator, Global};
|
||||||
|
|
||||||
|
use super::Vec;
|
||||||
|
|
||||||
|
/// A draining iterator for `Vec<T>`.
|
||||||
|
///
|
||||||
|
/// This `struct` is created by [`Vec::drain`].
|
||||||
|
/// See its documentation for more.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let mut v = vec![0, 1, 2];
|
||||||
|
/// let iter: std::vec::Drain<_> = v.drain(..);
|
||||||
|
/// ```
|
||||||
|
pub struct Drain<'a, T: 'a, A: Allocator + 'a = Global> {
|
||||||
|
/// Index of tail to preserve
|
||||||
|
pub(super) tail_start: usize,
|
||||||
|
/// Length of tail
|
||||||
|
pub(super) tail_len: usize,
|
||||||
|
/// Current remaining range to remove
|
||||||
|
pub(super) iter: slice::Iter<'a, T>,
|
||||||
|
pub(super) vec: NonNull<Vec<T, A>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T, A: Allocator> Drain<'a, T, A> {
|
||||||
|
/// Returns the remaining items of this iterator as a slice.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let mut vec = vec!['a', 'b', 'c'];
|
||||||
|
/// let mut drain = vec.drain(..);
|
||||||
|
/// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
|
||||||
|
/// let _ = drain.next().unwrap();
|
||||||
|
/// assert_eq!(drain.as_slice(), &['b', 'c']);
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn as_slice(&self) -> &[T] {
|
||||||
|
self.iter.as_slice()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to the underlying allocator.
|
||||||
|
#[must_use]
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn allocator(&self) -> &A {
|
||||||
|
unsafe { self.vec.as_ref().allocator() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Keep unyielded elements in the source `Vec`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// #![feature(drain_keep_rest)]
|
||||||
|
///
|
||||||
|
/// let mut vec = vec!['a', 'b', 'c'];
|
||||||
|
/// let mut drain = vec.drain(..);
|
||||||
|
///
|
||||||
|
/// assert_eq!(drain.next().unwrap(), 'a');
|
||||||
|
///
|
||||||
|
/// // This call keeps 'b' and 'c' in the vec.
|
||||||
|
/// drain.keep_rest();
|
||||||
|
///
|
||||||
|
/// // If we wouldn't call `keep_rest()`,
|
||||||
|
/// // `vec` would be empty.
|
||||||
|
/// assert_eq!(vec, ['b', 'c']);
|
||||||
|
/// ```
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn keep_rest(self) {
|
||||||
|
// At this moment layout looks like this:
|
||||||
|
//
|
||||||
|
// [head] [yielded by next] [unyielded] [yielded by next_back] [tail]
|
||||||
|
// ^-- start \_________/-- unyielded_len \____/-- self.tail_len
|
||||||
|
// ^-- unyielded_ptr ^-- tail
|
||||||
|
//
|
||||||
|
// Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`.
|
||||||
|
// Here we want to
|
||||||
|
// 1. Move [unyielded] to `start`
|
||||||
|
// 2. Move [tail] to a new start at `start + len(unyielded)`
|
||||||
|
// 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)`
|
||||||
|
// a. In case of ZST, this is the only thing we want to do
|
||||||
|
// 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
|
||||||
|
let mut this = ManuallyDrop::new(self);
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
let source_vec = this.vec.as_mut();
|
||||||
|
|
||||||
|
let start = source_vec.len();
|
||||||
|
let tail = this.tail_start;
|
||||||
|
|
||||||
|
let unyielded_len = this.iter.len();
|
||||||
|
let unyielded_ptr = this.iter.as_slice().as_ptr();
|
||||||
|
|
||||||
|
// ZSTs have no identity, so we don't need to move them around.
|
||||||
|
let needs_move = mem::size_of::<T>() != 0;
|
||||||
|
|
||||||
|
if needs_move {
|
||||||
|
let start_ptr = source_vec.as_mut_ptr().add(start);
|
||||||
|
|
||||||
|
// memmove back unyielded elements
|
||||||
|
if unyielded_ptr != start_ptr {
|
||||||
|
let src = unyielded_ptr;
|
||||||
|
let dst = start_ptr;
|
||||||
|
|
||||||
|
ptr::copy(src, dst, unyielded_len);
|
||||||
|
}
|
||||||
|
|
||||||
|
// memmove back untouched tail
|
||||||
|
if tail != (start + unyielded_len) {
|
||||||
|
let src = source_vec.as_ptr().add(tail);
|
||||||
|
let dst = start_ptr.add(unyielded_len);
|
||||||
|
ptr::copy(src, dst, this.tail_len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
source_vec.set_len(start + unyielded_len + this.tail_len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn as_ref(&self) -> &[T] {
|
||||||
|
self.as_slice()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {}
|
||||||
|
|
||||||
|
unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
|
||||||
|
type Item = T;
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn next(&mut self) -> Option<T> {
|
||||||
|
self.iter
|
||||||
|
.next()
|
||||||
|
.map(|elt| unsafe { ptr::read(elt as *const _) })
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||||
|
self.iter.size_hint()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn next_back(&mut self) -> Option<T> {
|
||||||
|
self.iter
|
||||||
|
.next_back()
|
||||||
|
.map(|elt| unsafe { ptr::read(elt as *const _) })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Drop for Drain<'_, T, A> {
|
||||||
|
#[inline]
|
||||||
|
fn drop(&mut self) {
|
||||||
|
/// Moves back the un-`Drain`ed elements to restore the original `Vec`.
|
||||||
|
struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);
|
||||||
|
|
||||||
|
impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
|
||||||
|
fn drop(&mut self) {
|
||||||
|
if self.0.tail_len > 0 {
|
||||||
|
unsafe {
|
||||||
|
let source_vec = self.0.vec.as_mut();
|
||||||
|
// memmove back untouched tail, update to new length
|
||||||
|
let start = source_vec.len();
|
||||||
|
let tail = self.0.tail_start;
|
||||||
|
if tail != start {
|
||||||
|
let src = source_vec.as_ptr().add(tail);
|
||||||
|
let dst = source_vec.as_mut_ptr().add(start);
|
||||||
|
ptr::copy(src, dst, self.0.tail_len);
|
||||||
|
}
|
||||||
|
source_vec.set_len(start + self.0.tail_len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let iter = mem::replace(&mut self.iter, [].iter());
|
||||||
|
let drop_len = iter.len();
|
||||||
|
|
||||||
|
let mut vec = self.vec;
|
||||||
|
|
||||||
|
if size_of::<T>() == 0 {
|
||||||
|
// ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount.
|
||||||
|
// this can be achieved by manipulating the Vec length instead of moving values out from `iter`.
|
||||||
|
unsafe {
|
||||||
|
let vec = vec.as_mut();
|
||||||
|
let old_len = vec.len();
|
||||||
|
vec.set_len(old_len + drop_len + self.tail_len);
|
||||||
|
vec.truncate(old_len + self.tail_len);
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// ensure elements are moved back into their appropriate places, even when drop_in_place panics
|
||||||
|
let _guard = DropGuard(self);
|
||||||
|
|
||||||
|
if drop_len == 0 {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// as_slice() must only be called when iter.len() is > 0 because
|
||||||
|
// vec::Splice modifies vec::Drain fields and may grow the vec which would invalidate
|
||||||
|
// the iterator's internal pointers. Creating a reference to deallocated memory
|
||||||
|
// is invalid even when it is zero-length
|
||||||
|
let drop_ptr = iter.as_slice().as_ptr();
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
// drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place
|
||||||
|
// a pointer with mutable provenance is necessary. Therefore we must reconstruct
|
||||||
|
// it from the original vec but also avoid creating a &mut to the front since that could
|
||||||
|
// invalidate raw pointers to it which some unsafe code might rely on.
|
||||||
|
let vec_ptr = vec.as_mut().as_mut_ptr();
|
||||||
|
let drop_offset = drop_ptr.offset_from(vec_ptr) as usize;
|
||||||
|
let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len);
|
||||||
|
ptr::drop_in_place(to_drop);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}
|
||||||
198
third_party/rust/allocator-api2/src/stable/vec/into_iter.rs
vendored
Normal file
198
third_party/rust/allocator-api2/src/stable/vec/into_iter.rs
vendored
Normal file
@@ -0,0 +1,198 @@
|
|||||||
|
use core::fmt;
|
||||||
|
use core::iter::FusedIterator;
|
||||||
|
use core::marker::PhantomData;
|
||||||
|
use core::mem::{self, size_of, ManuallyDrop};
|
||||||
|
|
||||||
|
use core::ptr::{self, NonNull};
|
||||||
|
use core::slice::{self};
|
||||||
|
|
||||||
|
use crate::stable::addr;
|
||||||
|
|
||||||
|
use super::{Allocator, Global, RawVec};
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
use super::Vec;
|
||||||
|
|
||||||
|
/// An iterator that moves out of a vector.
|
||||||
|
///
|
||||||
|
/// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec)
|
||||||
|
/// (provided by the [`IntoIterator`] trait).
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let v = vec![0, 1, 2];
|
||||||
|
/// let iter: std::vec::IntoIter<_> = v.into_iter();
|
||||||
|
/// ```
|
||||||
|
pub struct IntoIter<T, A: Allocator = Global> {
|
||||||
|
pub(super) buf: NonNull<T>,
|
||||||
|
pub(super) phantom: PhantomData<T>,
|
||||||
|
pub(super) cap: usize,
|
||||||
|
// the drop impl reconstructs a RawVec from buf, cap and alloc
|
||||||
|
// to avoid dropping the allocator twice we need to wrap it into ManuallyDrop
|
||||||
|
pub(super) alloc: ManuallyDrop<A>,
|
||||||
|
pub(super) ptr: *const T,
|
||||||
|
pub(super) end: *const T,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||||
|
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> IntoIter<T, A> {
|
||||||
|
/// Returns the remaining items of this iterator as a slice.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let vec = vec!['a', 'b', 'c'];
|
||||||
|
/// let mut into_iter = vec.into_iter();
|
||||||
|
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
|
||||||
|
/// let _ = into_iter.next().unwrap();
|
||||||
|
/// assert_eq!(into_iter.as_slice(), &['b', 'c']);
|
||||||
|
/// ```
|
||||||
|
pub fn as_slice(&self) -> &[T] {
|
||||||
|
unsafe { slice::from_raw_parts(self.ptr, self.len()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the remaining items of this iterator as a mutable slice.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let vec = vec!['a', 'b', 'c'];
|
||||||
|
/// let mut into_iter = vec.into_iter();
|
||||||
|
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
|
||||||
|
/// into_iter.as_mut_slice()[2] = 'z';
|
||||||
|
/// assert_eq!(into_iter.next().unwrap(), 'a');
|
||||||
|
/// assert_eq!(into_iter.next().unwrap(), 'b');
|
||||||
|
/// assert_eq!(into_iter.next().unwrap(), 'z');
|
||||||
|
/// ```
|
||||||
|
pub fn as_mut_slice(&mut self) -> &mut [T] {
|
||||||
|
unsafe { &mut *self.as_raw_mut_slice() }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to the underlying allocator.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn allocator(&self) -> &A {
|
||||||
|
&self.alloc
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_raw_mut_slice(&mut self) -> *mut [T] {
|
||||||
|
ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> {
|
||||||
|
fn as_ref(&self) -> &[T] {
|
||||||
|
self.as_slice()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {}
|
||||||
|
|
||||||
|
unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Iterator for IntoIter<T, A> {
|
||||||
|
type Item = T;
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn next(&mut self) -> Option<T> {
|
||||||
|
if self.ptr == self.end {
|
||||||
|
None
|
||||||
|
} else if size_of::<T>() == 0 {
|
||||||
|
// purposefully don't use 'ptr.offset' because for
|
||||||
|
// vectors with 0-size elements this would return the
|
||||||
|
// same pointer.
|
||||||
|
self.ptr = self.ptr.cast::<u8>().wrapping_add(1).cast();
|
||||||
|
|
||||||
|
// Make up a value of this ZST.
|
||||||
|
Some(unsafe { mem::zeroed() })
|
||||||
|
} else {
|
||||||
|
let old = self.ptr;
|
||||||
|
self.ptr = unsafe { self.ptr.add(1) };
|
||||||
|
|
||||||
|
Some(unsafe { ptr::read(old) })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||||
|
let exact = if size_of::<T>() == 0 {
|
||||||
|
addr(self.end).wrapping_sub(addr(self.ptr))
|
||||||
|
} else {
|
||||||
|
unsafe { self.end.offset_from(self.ptr) as usize }
|
||||||
|
};
|
||||||
|
(exact, Some(exact))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn count(self) -> usize {
|
||||||
|
self.len()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn next_back(&mut self) -> Option<T> {
|
||||||
|
if self.end == self.ptr {
|
||||||
|
None
|
||||||
|
} else if size_of::<T>() == 0 {
|
||||||
|
// See above for why 'ptr.offset' isn't used
|
||||||
|
self.end = self.end.cast::<u8>().wrapping_add(1).cast();
|
||||||
|
|
||||||
|
// Make up a value of this ZST.
|
||||||
|
Some(unsafe { mem::zeroed() })
|
||||||
|
} else {
|
||||||
|
self.end = unsafe { self.end.sub(1) };
|
||||||
|
|
||||||
|
Some(unsafe { ptr::read(self.end) })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
|
||||||
|
|
||||||
|
#[doc(hidden)]
|
||||||
|
pub trait NonDrop {}
|
||||||
|
|
||||||
|
// T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr
|
||||||
|
// and thus we can't implement drop-handling
|
||||||
|
impl<T: Copy> NonDrop for T {}
|
||||||
|
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> {
|
||||||
|
fn clone(&self) -> Self {
|
||||||
|
let mut vec = Vec::<T, A>::with_capacity_in(self.len(), (*self.alloc).clone());
|
||||||
|
vec.extend(self.as_slice().iter().cloned());
|
||||||
|
vec.into_iter()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Drop for IntoIter<T, A> {
|
||||||
|
fn drop(&mut self) {
|
||||||
|
struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>);
|
||||||
|
|
||||||
|
impl<T, A: Allocator> Drop for DropGuard<'_, T, A> {
|
||||||
|
fn drop(&mut self) {
|
||||||
|
unsafe {
|
||||||
|
// `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec
|
||||||
|
let alloc = ManuallyDrop::take(&mut self.0.alloc);
|
||||||
|
// RawVec handles deallocation
|
||||||
|
let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let guard = DropGuard(self);
|
||||||
|
// destroy the remaining elements
|
||||||
|
unsafe {
|
||||||
|
ptr::drop_in_place(guard.0.as_raw_mut_slice());
|
||||||
|
}
|
||||||
|
// now `guard` will be dropped and do the rest
|
||||||
|
}
|
||||||
|
}
|
||||||
3288
third_party/rust/allocator-api2/src/stable/vec/mod.rs
vendored
Normal file
3288
third_party/rust/allocator-api2/src/stable/vec/mod.rs
vendored
Normal file
File diff suppressed because it is too large
Load Diff
43
third_party/rust/allocator-api2/src/stable/vec/partial_eq.rs
vendored
Normal file
43
third_party/rust/allocator-api2/src/stable/vec/partial_eq.rs
vendored
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
use alloc_crate::borrow::Cow;
|
||||||
|
|
||||||
|
use crate::stable::alloc::Allocator;
|
||||||
|
|
||||||
|
use super::Vec;
|
||||||
|
|
||||||
|
macro_rules! __impl_slice_eq1 {
|
||||||
|
([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
|
||||||
|
impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
|
||||||
|
where
|
||||||
|
T: PartialEq<U>,
|
||||||
|
$($ty: $bound)?
|
||||||
|
{
|
||||||
|
#[inline(always)]
|
||||||
|
fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
|
||||||
|
#[inline(always)]
|
||||||
|
fn ne(&self, other: &$rhs) -> bool { self[..] != other[..] }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__impl_slice_eq1! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &[U] }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &mut [U] }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] &[T], Vec<U, A> }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] &mut [T], Vec<U, A> }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] Vec<T, A>, [U] }
|
||||||
|
__impl_slice_eq1! { [A: Allocator] [T], Vec<U, A> }
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
__impl_slice_eq1! { [A: Allocator] Cow<'_, [T]>, Vec<U, A> where T: Clone }
|
||||||
|
__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
|
||||||
|
__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
|
||||||
|
|
||||||
|
// NOTE: some less important impls are omitted to reduce code bloat
|
||||||
|
// FIXME(Centril): Reconsider this?
|
||||||
|
//__impl_slice_eq1! { [const N: usize] Vec<A>, &mut [B; N], }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] [A; N], Vec<B>, }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] &[A; N], Vec<B>, }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] &mut [A; N], Vec<B>, }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, [B; N], }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &[B; N], }
|
||||||
|
//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &mut [B; N], }
|
||||||
31
third_party/rust/allocator-api2/src/stable/vec/set_len_on_drop.rs
vendored
Normal file
31
third_party/rust/allocator-api2/src/stable/vec/set_len_on_drop.rs
vendored
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
|
||||||
|
//
|
||||||
|
// The idea is: The length field in SetLenOnDrop is a local variable
|
||||||
|
// that the optimizer will see does not alias with any stores through the Vec's data
|
||||||
|
// pointer. This is a workaround for alias analysis issue #32155
|
||||||
|
pub(super) struct SetLenOnDrop<'a> {
|
||||||
|
len: &'a mut usize,
|
||||||
|
local_len: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> SetLenOnDrop<'a> {
|
||||||
|
#[inline(always)]
|
||||||
|
pub(super) fn new(len: &'a mut usize) -> Self {
|
||||||
|
SetLenOnDrop {
|
||||||
|
local_len: *len,
|
||||||
|
len,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
pub(super) fn increment_len(&mut self, increment: usize) {
|
||||||
|
self.local_len += increment;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Drop for SetLenOnDrop<'_> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn drop(&mut self) {
|
||||||
|
*self.len = self.local_len;
|
||||||
|
}
|
||||||
|
}
|
||||||
135
third_party/rust/allocator-api2/src/stable/vec/splice.rs
vendored
Normal file
135
third_party/rust/allocator-api2/src/stable/vec/splice.rs
vendored
Normal file
@@ -0,0 +1,135 @@
|
|||||||
|
use core::ptr::{self};
|
||||||
|
use core::slice::{self};
|
||||||
|
|
||||||
|
use crate::stable::alloc::{Allocator, Global};
|
||||||
|
|
||||||
|
use super::{Drain, Vec};
|
||||||
|
|
||||||
|
/// A splicing iterator for `Vec`.
|
||||||
|
///
|
||||||
|
/// This struct is created by [`Vec::splice()`].
|
||||||
|
/// See its documentation for more.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// let mut v = vec![0, 1, 2];
|
||||||
|
/// let new = [7, 8];
|
||||||
|
/// let iter: std::vec::Splice<_> = v.splice(1.., new);
|
||||||
|
/// ```
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct Splice<'a, I: Iterator + 'a, A: Allocator + 'a = Global> {
|
||||||
|
pub(super) drain: Drain<'a, I::Item, A>,
|
||||||
|
pub(super) replace_with: I,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<I: Iterator, A: Allocator> Iterator for Splice<'_, I, A> {
|
||||||
|
type Item = I::Item;
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
self.drain.next()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||||
|
self.drain.size_hint()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<I: Iterator, A: Allocator> DoubleEndedIterator for Splice<'_, I, A> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn next_back(&mut self) -> Option<Self::Item> {
|
||||||
|
self.drain.next_back()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<I: Iterator, A: Allocator> ExactSizeIterator for Splice<'_, I, A> {}
|
||||||
|
|
||||||
|
impl<I: Iterator, A: Allocator> Drop for Splice<'_, I, A> {
|
||||||
|
#[inline]
|
||||||
|
fn drop(&mut self) {
|
||||||
|
self.drain.by_ref().for_each(drop);
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
if self.drain.tail_len == 0 {
|
||||||
|
self.drain.vec.as_mut().extend(self.replace_with.by_ref());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// First fill the range left by drain().
|
||||||
|
if !self.drain.fill(&mut self.replace_with) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// There may be more elements. Use the lower bound as an estimate.
|
||||||
|
// FIXME: Is the upper bound a better guess? Or something else?
|
||||||
|
let (lower_bound, _upper_bound) = self.replace_with.size_hint();
|
||||||
|
if lower_bound > 0 {
|
||||||
|
self.drain.move_tail(lower_bound);
|
||||||
|
if !self.drain.fill(&mut self.replace_with) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Collect any remaining elements.
|
||||||
|
// This is a zero-length vector which does not allocate if `lower_bound` was exact.
|
||||||
|
let mut collected = self
|
||||||
|
.replace_with
|
||||||
|
.by_ref()
|
||||||
|
.collect::<Vec<I::Item>>()
|
||||||
|
.into_iter();
|
||||||
|
// Now we have an exact count.
|
||||||
|
if collected.len() > 0 {
|
||||||
|
self.drain.move_tail(collected.len());
|
||||||
|
let filled = self.drain.fill(&mut collected);
|
||||||
|
debug_assert!(filled);
|
||||||
|
debug_assert_eq!(collected.len(), 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Private helper methods for `Splice::drop`
|
||||||
|
impl<T, A: Allocator> Drain<'_, T, A> {
|
||||||
|
/// The range from `self.vec.len` to `self.tail_start` contains elements
|
||||||
|
/// that have been moved out.
|
||||||
|
/// Fill that range as much as possible with new elements from the `replace_with` iterator.
|
||||||
|
/// Returns `true` if we filled the entire range. (`replace_with.next()` didn’t return `None`.)
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn fill<I: Iterator<Item = T>>(&mut self, replace_with: &mut I) -> bool {
|
||||||
|
let vec = unsafe { self.vec.as_mut() };
|
||||||
|
let range_start = vec.len;
|
||||||
|
let range_end = self.tail_start;
|
||||||
|
let range_slice = unsafe {
|
||||||
|
slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start)
|
||||||
|
};
|
||||||
|
|
||||||
|
for place in range_slice {
|
||||||
|
if let Some(new_item) = replace_with.next() {
|
||||||
|
unsafe { ptr::write(place, new_item) };
|
||||||
|
vec.len += 1;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
true
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Makes room for inserting more elements before the tail.
|
||||||
|
#[inline(always)]
|
||||||
|
unsafe fn move_tail(&mut self, additional: usize) {
|
||||||
|
let vec = unsafe { self.vec.as_mut() };
|
||||||
|
let len = self.tail_start + self.tail_len;
|
||||||
|
vec.buf.reserve(len, additional);
|
||||||
|
|
||||||
|
let new_tail_start = self.tail_start + additional;
|
||||||
|
unsafe {
|
||||||
|
let src = vec.as_ptr().add(self.tail_start);
|
||||||
|
let dst = vec.as_mut_ptr().add(new_tail_start);
|
||||||
|
ptr::copy(src, dst, self.tail_len);
|
||||||
|
}
|
||||||
|
self.tail_start = new_tail_start;
|
||||||
|
}
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user